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Abstract. This paper shows a study on an alternative method for unsupervised 
classi Ileal ion of polarimetric-Synthetic Aperture Radar (SAR) data. The first step was 
lo extract several main physical polarimetric parameters (polarization power, 
coherence, and phase difference) from polarimetric covariance matrix (or coherency 
matrix) and physical scattering characteristics of land use/cover based on polarimetric 
decomposition (Cloude decomposition model). In this paper, we found that these 
features have complementary information which can be integrated in order to improve 
the discrimination of different land use/cover types. Classification stage was performed 
using Fuzzy Maximum Likelihood Estimation (FMLE) clustering algorithm. FMLE 
algorithm allows for ellipsoidal clusters of arbitrary extent and is consequently more 
flexible than standard Fuzzy K-Means clustering algorithm. However, basic FMLE 
algorithm makes use exclusively the spectral (or intensity) properties of the individual 
pixel vectors and spatial-contextual information of the image was not taken into 
account. Hence, poor (noisy) classification result is usually obtained from SAR data due 
lo speckle noise. In this paper, we propose a modified FMLE which integrate basic 
FMLE clustering with spatial-contextual information by statistical analysis of local 
neighbourhoods. The effectiveness of the proposed method was demonstrated using E-
SAR polarimetric data acquired on the area of Penajam, East Kalimantan, Indonesia. 
Results showed classified images improving land-cover discrimination performance, 
exhibiting homogeneous region, and preserving edge and other fine structures. 
Keywords: Ctoude's polarimetric decomposition. FMLE clustering, polarimetric 
coherence, Polarimetric-SAR, unsupervised classification. 

1. Introduction 
Fully Polarimetric-SAR sensors are 

becoming more and more important in 
remote sensing applications due to: I) its all-
weather, day and night operational 
capability; 2) its sensitivity of the 
polarization state of the backscattered wave 
to physical characteristics of the ground 
target (e.g. shape, size, orientation, surface 
roughness, moisture content, dielectric 
properties of the target) (Woodhouse, 2006; 
Tso and Mather, 2001; Bruzzone el a/., 
2004). The utilization of multi-polarized 

wave in polarimetric-SAR system allows us 
to extract additional information which can 
be employed as classification features, thus 
giving better land use/cover classification 
results than single-channel single-
polarization SAR data (Karathanassi and 
Dabboor, 2004; Woodhouse, 2006). For this 
reasons, in recent years, the remote sensing 
community has become increasingly 
interested in the use of polarimetric-SAR 
data for the production of high accuracy land-
cover maps. 
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Many algorithms have been proposed for 
supervised and unsupervised classification 
of polarimetric-SAR dala. In supervised 
classification approach, the choice of 
training areas which adequately represent the 
spectral characteristics of each class is 
important as Ihe quality of the training set has 
a profound effect on the validity of the result. 
This manual technique of finding and 
verifying training areas can be laborious, and 
particularly more complicated when ground 
truth (which often both cost and time 
consumption) or other priori information 
about the data is not available. On the other 
hand, unsuperv ised c lass i f i ca t i on 
compensate for these deficiencies by finding 
an Underlying class structure automatically 
and then organizing the data into groups 
sharing similar characteristics (Canty, 
2006). Unsupervised classification for 
polarimetric-SAR follows two major 
approaches. One is based on purely on 
statistical clustering of polarimetric-SAR 
data, and the other is based on the analysis of 
physical scattering properties. In former 
approach, the 3x3 complex covariancc 
matrix (or coherency matrix) formed from 
SAR polarimetry system measurements was 
assumed to have a multivariate complex 
Wishart distribution. Researchers use this 
distribution to derive distance measures for 
various clustering algorithm(Kersten et al., 
2005; Davidson elai, 2002). 

The later approach used the inherent 
characteristics of polarimetric-SAR data and 
classified based on scattering mechanisms of 
the target scene. Fully polarimetric data 
provides unique possibility to separate 
scattering contributions of different nature, 
which can be associated to certain 
elementary scattering mechanisms (e.g. 
surface or single-bounce, double-bounce, 
and v o l u m e sca t t e r i ng ) . Several 
decomposition techniques have been 
proposed for extracting and identifying these 
valuable information. One method is based 
on polarimetric target decomposition theory 

proposed by Cloude and Pottier (1997), 
which is capable of covering whole range of 
scattering mechanisms and yields an' 
unsupervised classification scheme. The 
target's scattering mechanism can be 
parameterized by entropy / /and alpha angle 
a which derived from the eigenvalue 
decomposition of the coherency matrix. The 
entropy H is a measure of randomness of 
scattering mechanisms, and the alpha angle a 
characterizes the scattering mechanisms. The 
H-a plane was divided into eight zones. The 
physical scattering characteristic associated 
with each zone provides information for 
terrain type assignment. 

Add i t iona l l y , several interest ing 
combinations of these types of classification 
approaches have been found (Lee el al., 
1999-a: Kersten et al.. 2005 ). Lee et at. 
(1999-a) developed some classification 
methods combining both the Cloude's 
polarimetric decomposition and clustering 
algorithm based on the complex Wishart 
distribution (often referred as complex 
Wishart classifier). These methods achieve 
preliminary classification sets using the H-a 
plane (8 zone), and thereafter iteratively 
classify these preliminary sets using Wishart 
classifier to make final classifications. 
Unsupervised Wishart H -a classification 
has been found to be applicable to land cover 
classification (Lumsdon, 2003), sea ice 
classification (Scheuchl, 2001), and forest 
classification (Ferro-Familc/o/.. 2005). 

In general, acceptable classification 
results were obtained, w hereas in some cases, 
they also reported some limitations of these 
methods for fur ther poss ib i l i ty to 
discriminate and classify into different 
object/ land cover types especially with 
similar scattering mechanism and often yield 
clusters (classes) whose physical meaning is 
uncertain. To overcome these problems, it is 
advisable to use the additional information 
which can be included as extension input 
features thus reduce inter-class ambiguity 
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and improve the classification performance. 
Although such additional information can be 
obtained from other data sources (such 
optical data, muIti-frequency radar data, 
geological maps, etc), the consideration of 
additional information which can be 
extracted directly from same polarimetric-
SAR data but using different aspect would be 
meaningful (such image texture, context, 
structural relationships, etc). For example, in 
our previous publication (Sambodo el al., 
2007), we show that integration the 
combined features extracted from 
polarimetric decomposition and textural 
analysis with supervised neural network 
classifier successfully improve the 
classification results in a significant way. 
However, the aforementioned Wishart 
classifier use a 3x3 complex covariance 
matrix (or coherency matrix) form as an input 
feature, thus other additional features (which 
usually represent as various data types) can 
not be added into this input form. 

Another limitation of these algorithms is 
that they performed on a pixel-by-pixel basis, 
i.e., each pixel is treated independently of its 
neighbours; spatial context is only indirectly 
considered during speckle filtering. The local 
neighbourhood does indeed have a 
significant influence on a pixel's class 
membership. When a certain region already 
has already been classified, with high 
confidence, as belonging to a single class, it 
becomes comparatively unlikely that a pixel 
in this region belongs to another class. The 
much more likely scenario is misestimation 
of its covariance matrix due to speckle noise, 
which usually produced very noisy 
classification results (often appear as "salt-
and-pepper" effect even in homogeneous 
areas). Due to inherently high noise level of 
SAR data, the inclusion of local 
neighbourhoods in statistical decision about 
class membership is helpful to support 
homogeneous classification results (Canty, 
2006). 
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In this paper, we propose an unsupervised 
classification method based on FMLE 
clustering algorithm that integrates 
complementary information of several 
polarimetric parameters and target scattering 
characteristic features, and spatial contextual 
information. Fuzzy classification techniques 
allow each pixel in the image to belong to 
more than one cluster according to its degree 
of membership in each clusters (Canty, 2006: 
Tso and Mather, 2001). Therefore, it is 
suitable tor classification of SAR data as the 
presence of speckle noise often causes many 
pixels in the data arc really ambiguous (i.e., 
imprecise, incomplete, and not totally 
reliable). A FMLE clustering has been chosen 
which it allows for hyperellipsoidal forms of 
the clusters and is consequently more flexible 
than standard fuzzy k-means (FKM) 
clustering (with the use of Euclidean 
distance, thus giving circular clusters) 
(Canty, 2006; Canty and Nielsen, 2004). 

Further advantage is that other features 
can be easily added into FMLE clustering 
process by extending the dimension of the 
input data vectors. These properties enable us 
to combine the wide range of information 
(features) which can be derived from 
polarimetric-SAR data using different 
feature extraction methods. In our case, 
motivate by our previous publication 
(Sambodo el a/., 2007), we will combine 
several main polarimetric parameters 
(polarization power, coherence, and phase 
difference) extracted from polarimetric 
covariance matrix and physical scattering 
characteristics of land use/cover based on 
Cloude's polarimetric decomposition. These 
features have complementary information 
which can be integrated in order to improve 
the discrim ination of different land use/cover 
types. 
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However, the basic FMLE algorihtm is a 
pixel-by-pixel basis classifier. Thus, in order 
to exploit the spatial-contextual information, 
we investigate the possibility of using 
probabilistic relaxation schemes. It 
iteratively adjust some initial estimates of the 
class-membership probabilities by reference 
to the class-membership probabilities of 
pixels in its neighborhood. In this paper, we 
propose a contextual FMLE classification 
which integrate probabilistic relaxation 
scheme into FMLE clustering iterations in 
order to improve the estimation of clustering 

parameters themselves thus provide better 
classification result. 

The proposed method has been tested on a 
fully polarimetrie E-SAR (L-Band) data 
acquired on the. area of Penajam, East 
Kalimantan, Indonesia. 

This paper is organized into the following 
fashions. Section II briefly describes the 
feature extraction procedures, which 
extracting several main polarimetrie 
parameters from polarimetrie covariance 
matrix and several physical scattering 
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characteristics based on Cloude's 
polarimetric decomposition. Section III 
explains the proposed classification 
procedure, which is designed by integrating 
spatial-contextual information with fuzzy 
maximum likelihood clustering algorithm. 
The experimental results are reported in 
section IV, and finally, Section V provides 
a discussion and conclusion. 

2. Feature Extraction Schemes 
2.1. Polarimetric Data Representation 

and Polarimetric Parameter 
Features Extraction 

For radar polarimetry, the 
backscattering properties of the target can 
be completely described by a 2x2 
complex scattering matrix, S , such that 

where Shv is the scattering element of 

horizontal transmitting and horizontal 
receiving polarization, and the other three 
elements are similarly defined. For the 
reciprocal backscattering case, Shv = Svh . 

Because there are effectively only three 
independent elements, the polarimetric 
scattering information can also be 
represented by a target vector, 

where the superscript "*" denotes the 
complex conjugate. C is a 3x3 Hermitian 
matrix, and has only six independent 
elements which can be employed as feature 

sets for classification purposes. Three real 
numbers on the main diagonal represent the 
powers (or intensity) of each polarization 
channels. 

The other three complex numbers on the 
off diagonal represent the complex 
correlations, which can be used to quantify 
the similarity of waves (or coherence) at 
different polarization. For this purpose, the 
normalized value of this complex 
correlations (for example, for element C l3 

is given by y = (S»Sr / ) 

is generally used. The magnitude of y 

(i.e., | / | ) gives a measure of the degree of 

polarimetric coherence and lies between 
zero (incoherent) and one (completely 
coherent). The phase of y represents the 

phase difference between two polarization 
states and lies between 0 and 180°. The 
degree of polarimetric coherence and 
polarimetric phase difference closely 
related to the physical characteristics of the 
target scene so it can be used as a feature 
set to discriminate different land-cover 
types (Woodhouse, 2006). However, the 
sensitivity of these parameters are different 
depend on what polarizations are chosen. 
Hence, in this work, we select two most 
promising features: i.e., HH-VV 
polarimetric coherence and HH-VV 
polarimetric phase difference. 

2.2. Feature Extraction based on 
Cloude's Polarimetric 
Decomposition 

Fully polarimetric data provides unique 
possibility to separate scattering 
contributions of different nature, which can 
be associated to certain elementary 
scattering mechanisms (e.g. surface or 
single-bounce, double-bounce, and volume 
scattering). Several decomposition 
techniques have been proposed for this 
purpose. In recent years, approaches based 
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The entropy H , ranging from 0 to 1, 
represents the randomness of the scattering, 
with H = 0 indicating a single scattering 
mechanism (isotropic scattering) and 
H = 1 representing a random mixture of 
scattering mechanisms. For ocean and less 
rough surfaces, surface scattering will 
dominate, and H is near 0. For heavily 
vegetated areas, the H value will be high, 
due to multiple scattering mechanisms. The 
anisotropy A represents the relative 
importance of the second and third 
scattering mechanisms. A high anisotropy 
states that only the second scattering 
mechanism is important, while a low 
anisotropy indicates that the third 
scattering mechanism also plays a role. The 
mean alpha angle a reveals the averaged 
scattering mechanisms from surface 
scattering ( a—»0° ), volume scattering 
(a -> 45" ), to double bounce scattering 
( a —> 90° ). H and a clearly 
characterize the scattering characteristics of 
a medium. Cloude and Pottier further 
suggest an unsupervised classification 
scheme, using the H - a plane sub-divide 

of Remote Sensing and Earth Sciences Vol.5, 2008 



into 8 basic zones characteristic of different 
scattering behaviors, as shown in Figure 2. 
However, this unsupervised estimation of 
the type of scattering mechanisms may 
reach some limitations due to the arbitrarily 
fixed linear boundaries in the H-a plane 
which may not fit to data distribution, 

leading to noisy classification results 
(Ferro-Famil et al., 2005; Lee et al, 1999-
a). Hence, in this work, we use entropy H, 
anisotropy A , and mean alpha angle a 
directly as classification feature inputs to 
the fuzzy clustering classifier which will be 
described in Section 3. 

Physical scattering characteristics: 
29: Low Entropy Surface Scattering 
28: Low Entropy Dipole Scattering 
Z7: Low Entropy Multiple Scattering 
26: Medium Entropy Surface Scattering 
25: Medium Entropy Vegetation Scattering 
Z4: Medium Entropy Multiple Scattering 
23: (Not a Feasible Region in H- OC space) 
22 : High Entropy Vegetation Scattering 
21 : High Entropy Multiple Scattering 

3. Proposed FMLE Clustering 
Including Spatial Context 

3.1. Fuzzy Clustering 
A fuzzy clustering algorithm yields a 

multiple-class pixel assignment where each 
pixel has membership in every class, but 
with varying degree. The memberships 
produce a fuzzy partition of the data that is 
viewed as an unsupervised classification. 
The following description is based on 
(Canty, 2006; Tso and Mather, 2001). The 
input features set (pixel vectors) 
\-{xt,x2,...,xn} consists of n vectors 

x{ e R'1 ( d is dimension of input 

features). Assuming there are K classes, 

//w = //t(jc(.) e[0,l] is the membership of 

the / th sample xt in the k th class and 

U = [//w] is the associated membership 

matrix. The set of cluster centers mk is 

Each 

sample point x.( satisfies the conservation 

of the membership constraint 

//,, e[0,I] and 

A: 

£ / / « = ! , for all n (10) 
k=\ 

The Fuzzy K-Means (FKM) clustering 
algorithm is based on minimization of the 
following fuzzy objective function 

K n 

/,(U,m) = 2-L//«D£^.|»*) (11 ) 
*=1 1=1 

denoted by m = (mpm2,...,m 

where DF is Euclidean distance 

D2
E(xi,mk) = [xi-mk) . The parameter 

q {q>\) determines the "degrees of 

fuzziness" and is often chosen as q = 2 . 

For q > 1 and xt * mk , for all i, k-, a 

minimum of Jq may be achieved under 

the circumstance: 
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The FKM clustering thus performed by 
iteratively applying Equations (12) and 
(13). The iteration terminates when the 
cluster centers mk or alternatively when 

the matrix elements juki cease to change 

significantly. 
The FKM algorithm has been 

implemented successfully in many 
applications, such as pattern classification 
and image segmentation. However, the 
standard FKM algorithm is based on fuzzy 
objective function of Equation 11 that 
using Euclidean distance. This favor the 
formation of hyperspherical clusters having 
similar radii. An alternative algorithm, the 
FMLE algorithm (Canty, 2006) allows for 
ellipsoidal clusters of arbitrary extent and 
is consequently more flexible. The FMLE 
algorithm can be derived from FKM 
algorithm by replacing Equation (12) for 
the class membership /.iki by the posterior 

max 
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we follow the suggestion of Gath and Geva 
(1989) and first obtain initial values for the 
//K by preceding the calculation with the 

FKM algorithm. For this purpose, in this 
work, we use only the entropy H and 
mean alpha angle a features to obtain 

initial fitj. However, the eight zones (or 

classes) in the H - a plane are not applied 
here, instead, we determine the number of 
classes based on the image content and a 
ground survey information. 

3.2. Spatial-contextual information based 
on Probabilistic Relaxation 

Both FKM and FMLE clustering 
algorithm described above make use 
exclusively the spectral (or intensity) 
properties of the individual pixel vectors 
and spatial-contextual information of the 
image was not taken into account. 

In order to incorporate spatial-
contextual information in classification 
process, in this paper, we adapted the 
probabilistic relaxation framework. This 
idea is based on the assumption that two 
neighbouring pixels are not entirely 
statistically independent: In reality, 
spatially random classification results are 
not very likely, instead continuous areas of 
certain sizes are to be expected. It seems 
clear that information from neighbouring 
pixels should increase the discrimination 
capabilities of the pixel-based measured 
data, and thus, improve the classification 
accuracy and the interpretation efficiency. 
Such ancillary information can be 
expressed by a neighbourhood function q, 
which must somehow reflect the contextual 
information of the neighbourhood (Canty, 
2006). In order to define it, a compatibility 
coefficient 

can be defined, which describes the total 
joint probability over all neighbours and 
their class assignments, that a pixel g falls 

into class kl . The probability q() gives 

information about class membership of 
pixel g solely by examination of its 
neighbourhood and without considering 
content of the pixel itself. 

After the FMLE clustering procedure, 
the class membership probabilities 
(according to Equation 17) are known. 
This allows to evaluate Equation (20) and 
results in two kinds of class probabilities 
for each pixels: One, qkj, based only on 
spatial contextual information, and another, 
fiu, based on spectral information only. A 

combined spectral-spatial class 
membership for the next iteration of the 
FMLE is then determined by 

Alternatively, this probabilistic 
relaxation process can be iteratively 
repeated before continue to the next 
iteration of the FMLE procedure in order to 
"propagate" (or to diffuse) the temporary 
updated results to their surrounding pixels / 
regions. In this work, we will observe the 
influence of number iterations of the 
probabilistic relaxation process on the 
classification result. An optimal number of 
iterations then will be determined by 
experiments. 
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The compatibility coefficients can be 
estimated from initially classified image. 
However, FMLE classifier is an iterative 
optimization classification procedure, then 
does not provide optimum result from first 
iteration. For this reason, in this proposed 
method, we apply spatial-contextual 
information after pixel-by-pixel basis 
FMLE classifier converges below a certain 
threshold £,. , and then continue using 
contextual FMLE classifier (FMLE 
following by probabilistic relaxation 
iteratively) until converges below a certain 
threshold £, . In this paper, we use 

Sx = 0 . 0 0 5 and s2 = 0 . 0 0 1 . 

4. Experimental Results 
The proposed method is tested using 

single look complex (SLC) fully 
polarimetric-SAR data acquired over 
Penajam area, East Kalimantan Province. 
These data were acquired in L-band by 
Airborne E-SAR method on November 
17th, 2004. The spatial resolution of the 
data used is 1.99 m and 3.0 m, in range and 
azimuth respectively. The scene under 
study contains different type of land 
covers: forest, fields, bare soils, and water 
area. Figure 3 shows a set of ground survey 
information. In Figure 3, the RGB image is 
formed using Pauli decomposition 
(Helmann, 2001). 

For preprocessing, we construct 
scattering matrix from single look data 
(SLC) data for each polarization and then 
apply speckle filtering using J.S.Lee 
Polarimetric Filter (Lee et ai, 1999-b). In 
this experiment, a 3x3 window has been 
used. Larger windows provide more 
speckle smoothing but may smear fine 
details in the image. 

Figure 4 shows the polarimetric 
parameters {5 features) extracted from 
covariance matrix. The powers of each 
polarization channels i.e.,: HH, HV, and 

VV intensity, are the most promising 
features for discriminating between 
different land-cover types. The HH-VV 
polarimetric coherence and HH-VV 
polarimetric phase difference have also 
such discrimination capability, but with 
relatively lower capability than intensity 
features. The HH-VV polarimetric 
coherence is particularly useful to 
discriminate forest (vegetation) area from 
other classes. 

Figure 5 shows the features extraction 
results from Cloude's polarimetric 
decomposition. By analyzing mean alpha 
angle ex and entropy H , we can observe 
that open water area is characterized by 
surface scattering (alpha values less than 
42.5°) with low entropy, while forest area 
is characterized by volume scattering 
(alpha values near 45°) with high entropy 
(H > 0.9). Bare soils and fields are both 
characterized relatively by medium entropy 
and low alpha values, and may cause low 
separability between these two classes. 
Anisotropy A does not provide sufficient 
sensitivity for the separation of the 
different land-cover types, however, may 
be used for separation of the bare soil class 
and field class. 

We then use these two feature datasets 
(i.e., five features of the polarimetric 
parameter and three features of Cloude's 
polarimetric decomposition) and combined 
features of both datasets (totally eight 
features) as input for FMLE classifier. Two 
versions of the FMLE were applied in 
these experiments: 

1. Non-contextual FMLE classification. In 
this case, probabilistic relaxation was 
not applied in all FMLE iterations. (The 
classification process is performed 
using only pixel-by-pixel basis 
classifier. See Figure 1.) 

2. Contextual FMLE classification. In this 
case, 4-neighbourhood probabilistic 
relaxation was applied with 1, 3, 5, 7, 
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and 9 iterations. (The classification 
process is first performed using pixel-by-
pixcl basis classifier, then continued using 
spatial-contextual classifier) 
The classification results of the non-

contextual FMLE systems are shown in Fig 6 
(a, c, and e). We can observe that polarimctric 
parameter features alone can provide 
reasonable result, but with some 
misclassification between forest, fields, and 
bare soils. For example, the bare soil areas in 
upper left comers of the image (see Figure 6-
a) were erroneously classified as forest. On 
die other hand, Cloude's decomposition 
features can identified accurately these bare 
soil areas (see Figure 6-c) and enhanced the 
discrimination between forest and non-forest 
areas. By combining these two feature 
datasets, the discrimination of different land 
cover types can be improved, thus giving 
belter classification result (see Figure 6-e). 

As comparison, the classification results 
using standard FKM clustering (using 
Euclidean distance) are also presented in 
Figure 6 (b, d, and 0- in all results, we 
observed that the FMLE clustering perform 
consistently better than the FKM clustering. 
Some misclassification between forest, 
fields, and bare soils are occurred evidently. 

and water class at river areas can not be 
accurately identified by FKM clustering. 

The classification results of the contextual 
FMLE systems are shown in Figure 7. In 
Figure 7-b, 1 iteration of the probabilistic 
relaxation have been used. Comparing with 
non-contextual result (Figure 7-a), although 
more homogeneous result is obtained, but the 
improvement is marginal. The classification 
results get more homogeneous (suppress 
more "salt and pepper" effect in 
homogeneous areas) by increasing the 
number of iteration. However, too many 
iterations lead to a widening of the effective 
neighbourhood of a pixel to such an extent 
that fully irrelevant spatial information 
falsifies the final classification results. It can 
also be confirmed in Figure 7-e (with 7 
iterations) and Figure 7-f (with 9 iterations), 
which some erosion of the object boundaries 
(particularly when the objects are small in 
size) are occurred evidently. We conclude 
that the best results are obtained with 3-5 
iterations (Figure 7-c or Figure 7-d). as it 
provide homogeneous classification result, 
but still preserve edge and other fine 
structures. 
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d) HH-VV Polarimetric Coherence c) HH-VV Polarimetric Phase 
Difference 

Figure 4. Polarimetric physical parameter features extracted from Polarimetric Covariance Matrix. 
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45 

Figure 6. Classification results using non-contextual FMLE clustering with combined 
features of Cloude's polarimetric decomposition and polarimetric physical 
parameters. These results are obtained without spatial-contextual information. 
(Classification results using FKM clustering are also presented as comparison) 
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5. Conclusion 
An alternative method for unsupervised 

classification of polarimetric-SAR data has 
been proposed. The method was designed by 
integrating the combined features extracted 
from polarimetric covariance matrix and 
Cloude's polarimetric decomposition with 
contextual FMLE classifier. 

The proposed method has been tested on a 
fully polarimetric, single look complex E-
SAR (L-Band) data acquired on the area of 
Pcnajam, East Kalimantan, Indonesia. 
Experimental results show that the proposed 
method improves land-cover discrimination 
performance, and provides robust and 
homogeneous classification results but still 
preserving edge and other fine structures. 
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