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Abstract. For the past four decades, many researchers have published a novel empirical methodology 

for bathymetry extraction using remote sensing data. However, a comparative analysis of each method 

has not yet been done. Which is important to determine the best method that gives a good accuracy 

prediction. This study focuses on empirical bathymetry extraction methodology for multispectral data 

with three visible band, specifically SPOT 6 Image. Twelve algorithms have been chosen intentionally, 

namely, 1) Ratio transform (RT); 2) Multiple linear regression (MLR); 3) Multiple nonlinear regression 

(RF); 4) Second-order polynomial of ratio transform (SPR); 5) Principle component (PC); 6) Multiple 

linear regression using relaxing uniformity assumption on water and atmosphere (KNW); 7) 

Semiparametric regression using depth-independent variables (SMP); 8) Semiparametric regression 

using spatial coordinates (STR); 9) Semiparametric regression using depth-independent variables and 

spatial coordinates (TNP), 10) bagging fitting ensemble (BAG); 11) least squares boosting fitting 

ensemble (LSB); and 12) support vector regression (SVR). This study assesses the performance of 12 

empirical models for bathymetry calculations in two different areas: Gili Mantra Islands, West Nusa 

Tenggara and Menjangan Island, Bali. The estimated depth from each method was compared with 

echosounder data; RF, STR, and TNP results demonstrate higher accuracy ranges from 0.02 to 0.63 m 

more than other nine methods. The TNP algorithm, producing the most accurate results (Gili Mantra 

Island RMSE = 1.01 m and R2=0.82, Menjangan Island RMSE = 1.09 m and R2=0.45), proved to be the 

preferred algorithm for bathymetry mapping. 
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1 INTRODUCTION 

Bathymetry data is important for 

ship traffic, conservation, coastal zoning 

and other environmental issues. 

Traditional bathymetric charts are 

collected using a single multibeam echo-

sounders of ship-borne surveying. This 

method gives a satisfactory accuracy in 

water depths of up to 200 m. Instead, 

these methods are limited by their high 

costs, areal coverage, and time 

consumption. This limitation became an 

important issue especially for a nation 

that has a long coastal area, such as 

Canada, Indonesia, Russia, and 

Philippine.  

Remote sensing has been suggested 

as an alternative tool for mapping the 

bathymetry especially for shallow water 

environment (Lyzenga 1978; Kanno et al. 
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2011). In this study, satellite derives 

bathymetry (here and after as SDB) term 

was used to define the remote sensing 

method for bathymetry extraction. The 

SDB technique for multispectral image 

start appear in 1970 proposed by Polycin  

et al. (1970), a prototype model based on a 

ratio of reflected radiation in at least two 

spectral bands in the visible region of the 

spectrum, was used to determine water 

depth. A decade after, for the first time 

used a commercial satellite data LANDSAT 

TM to extract the depth of using a 

linearized regression of single band 

(Lyzenga 1985), this method was based on 

previous publication (Lyzenga 1978). 

Since that time the algorithm has been re-

developed and applied to the newest 

multispectral image: LANDSAT-TM and 

ETM (Clark et al. 1987; Van Hengel and 

Spltzer 1991; Bierwirth et al. 1993; 

Daniell 2008), SPOT 4 and SPOT 5 

(Melsheimer and Chin 2001; Lafon et al. 

2002; Liu et al. 2010; Sánchez-Carnero et 

al. 2014), IKONOS (Stumpf et al. 2003; 

Hogrefe et al. 2008; Su et al. 2014), 

QuickBird (Conger et al. 2006; Mishra et 

al. 2006; Lyons et al. 2011), LANDSAT-OLI 

(Pacheco et al. 2015; Vinayaraj et al. 2016; 

Kabiri 2017; Pushparaj and Hegde 2017), 

and Worldview-2 (Lee and Kim 2011; 

Deidda and Sanna 2012; Doxani et al. 

2012; Bramante et al. 2013; Kanno et al. 

2013; Yuzugullu and Aksoy 2014; 

Eugenio et al. 2015; Manessa et al. 2016b; 

Guzinski et al. 2016; Hernandez and 

Armstrong 2016; Kibele and Shears 2016; 

Manessa et al. 2016a). 

Overall, SDB empirical algorithm 

can be divided into two types, first, the 

empirical algorithm that based on pixel 

radiance/reflectance value and second the 

combination of pixel radiance/reflectance 

value and the spatial information. This 

study focus on an empirical algorithm 

that based on pixel radiance/reflectance 

value and the set up was inspired by 

previous studies (Arya et al. 2016; 

Mohamed et al. 2017). But even so, both 

studies compared less number of an 

empirical algorithm. Early investigators 

analyzing SPOT 6/7 data for its utility in 

assessing bathymetry assessed the four 

extensions of Lyzenga’s SDB algorithm for 

turbid water (Arya et al. 2016) and a new 

statistical approach (Mohamed et al. 

2017), those studies have concluded that 

SPOT 6/7 performed accurately in the 

bathymetry mapping. 

Afterwards, no published work exists 

on comparing all published empirical SDB 

algorithm on the use of SPOT 6 data for 

bathymetry mapping. Our research 

focuses on the finding the best empirical 

SDB algorithm for SPOT 6 multispectral 

data. Twelve empirical SDB algorithm was 

intensionally chosen: 1) Ratio transform 

(henceforth named “RT”) by Stumpt et al. 

(2003); 2) Multiple linear regression 

(henceforth named “MLR”) by Lyzenga et 

al. (2006); 3) Multiple non-linear 

regression (henceforth named “RF”) by 

Manessa et al. (2016a); 4) Second-order 

polynomial of ratio transform (henceforth 

named “SPR”) by Mishra et al. (2006); 5) 

Principle component (henceforth named 

“PC”) by Van Hengel and Spitzer (1991); 

four extension of Lyzenga’s SDB algorithm 

by Kanno et al. (2011): 6) Multiple linear 

regression using relaxing uniformity 

assumption on water and atmosphere 

(henceforth named “KNW”); 7) 

Semiparametric regression using depth-

independent variables (henceforth named 

“SMP”); 8) semiparametric regression 

using spatial coordinates (henceforth 

named “STR”); 9) Semiparametric 

regression using depth-independent 

variables and spatial coordinates 

(henceforth named “TNP”), and three 

statistic new statistical approach of 

Mohamed et al. (2017): 10) Bagging Fitting 
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Ensemble (henceforth named “BAG”); 11) 

Least Squares Boosting Fitting Ensemble 

(henceforth named “LSB”); and 12) 

support vector regression (henceforth 

named “SVR”). 

 

2 MATERIALS AND METHODOLOGY 

2.1   Location and Data 

2.1.1 Location 

This study assesses the performance 

of twelve empirical models for bathymetry 

calculations in two different areas: Gili 

Mantra Islands, West Nusa Tenggara  and   

Menjangan Island, North Bali. First, the 

Gili Mantra Islands located on the off the 

coast of Lombok Island. The Gili Mantra 

Marine Natural Park includes three 

islands: Gili Trawangan, Gili Meno, and 

Gili Air (Figure 2-1B). Tourism is the 

dominant economic activity in the islands. 

Second, North Bali is the driest area in 

Bali Islands, due to low rainfall intensity. 

This condition became a perfect condition 

for a coral reef to grow. Menjangan Island 

(Figure 2-1A) is taken as the sample of the 

site that represent North Bali coral reef 

area. 

 

2.1.2 Data 

2.1.2.1 Single beam sonar 

Bathymetry   data   were    measured 

using a single-beam echo sounder and a 

differential global positioning system (D-

GPS) (plotted as a red dot in Figure 2-1). 

The bathymetry data of the Gili Islands 

Island and Menjangan Island is 

individually collected for research 

purposed on September 25th, 2011 and 

September 1st, 2010, respectively. The 

depth data was strongly affected by tide 

and wave. Then this study applied a tidal 

correction (explain further in subchapter 

3.1) to reduce the tide effect. But the wave 

effect is un-corrected and became the 

drawback issue. 

 
 
 
 
 
 
 
 

 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 2-1: Study Site: Indonesia map (upper right), satellite image of Bali island and part of Lombok 

island (upper left), spot 6 image of Gili Mantra island (under right) and Menjangan island 
(under left). the red dot shows the depth measurement data 
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2.1.2.2 Multispectral imagery 

The SPOT 6 high-resolution 

commercial imaging satellite was 

launched on September 9, 2012. The 

satellite is in a nearly circular, sun-

synchronous orbit with a period of 98.97 

minutes at an altitude of approximately 

694 km. SPOT 6 acquires 12-bit data in 

five spectral bands covering blue, green, 

red, panchromatic, and near-infrared. 

SPOT 6 image used in this study is shown 

in Figure 2-1. 

 

2.2 Methods 

2.2.1 Tidal Correction 

The measured depth data and 

Multispectral Imagery were affected by the 

tide. Hence, it necessary to convert the 

measured depth to zero mean sea levels 

(MSL) by subtracting the measured depth 

from the tide level of tide gauge. Also, the 

Imagery data should tide corrected up to 

the zero MSL. The tidal data was collected 

from the Indonesia Geospatial Agency 

tidal station. 

 

2.2.2 Image Pre-rocessing: Atmospheric 

and Surface Scattering Correction 

The SPOT 6 imagery passed three 

steps of image pre-processing. The first 

step was sensor calibration from digital 

numbers to the units of band-averaged 

spectral radiance or TOA (Top of 

Atmosphere) radiance. The equations and 

calibration coefficients applied were based 

on the technical note about the 

radiometric use of SPOT 6 imagery. The 

physical units of band-averaged spectral 

radiance are W∙m−2∙sr−1∙µm−1. Secondly, 

the atmospheric and surface noise then 

TOA radiance were corrected (Lyzenga et 

al. 2006). Then, the formula of Lyzenga et 

al. (2006)’s atmospheric dan surface 

scattering correction is written as: 
𝐿𝑐𝑖

= 𝐿𝑇𝑂𝐴𝑖
− 𝛼𝑖𝑁𝐼𝑅 . (𝐿𝑇𝑂𝐴.𝑁𝐼𝑅 − �̅�𝑇𝑂𝐴.𝑁𝐼𝑅) (2-1) 

Where 𝐿𝑇𝑂𝐴.𝑁𝐼𝑅1 is the measured TOA 

radiance in NIR band, �̅�𝑇𝑂𝐴.𝑁𝐼𝑅 is that 

average over the deep water pixels, and 

𝛼𝑖𝑁𝐼𝑅 is the slope of the simple regression 

line between the visible radiance and NIR 

radiance for the deep-water pixels.  

Lastly, the relationship between 

radiance and depth was linearized to 

create the transformed radiance (𝑋𝑖 ). 

Based on Lyzenga et al. (1978), the 

transformed radiance (𝑋𝑖 ) is a linear value 

of radiance and depth and written as: 

 
𝑋𝑖 = 𝑙𝑜𝑔 (𝐿𝑐𝑖

− 𝐿𝑐
̅̅̅

∞,𝑖
) (2-2) 

 

Where 𝐿𝑐
̅̅̅

∞,𝑖
 is the mean of surface 

radiance deep water area for each band i. 

The 𝑋𝑖 for three visible bands are used as 
the input for Lyzenga’s based model. 

 
2.2.3 Empirical Satellite Derive Bathymetry 

Algorithm 

The twelve empirical algorithm has 

been choosing intentionally, this 

algorithm is the most commonly used and 

also the newest proposed. Several 

algorithms is a modification of and the 

first proposed SDB algorithm (Lyzenga 

1978; Lyzenga et al. 2006). Most of the 

modification is based on statistical model 

improvement to nail several unrealistic 

assumptions, such as the number of 

bottom types and is based on a premise 

that bottom radiance is discrete, non-

linear relation due to noise influence, and 

spatial uncorrelatedness of the error term. 

The summary of SDB empirical algorithm 

shown in Table 2-1. 

 

2.2.4 Accuracy Assessment 

The depth estimation accuracy of 

each model is measured by (Walpole 

1968): 

 

R2 = 1 − ∑(ℎ𝑖 − ℎ̂𝑖)
2

𝑖

∑(ℎ𝑖 − ℎ̅)
2

𝑖

⁄  (2-3) 
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RMSE = ( ∑(ℎ𝑖 − ℎ̂𝑖)
2

𝑛

𝑖=1

𝑛⁄ )

0.5

 (2-4) 

where h is measurement depth, ℎ̂ is 

estimated depth,  ℎ̅ is the mean of depth 

measurement value, and n is the number 

of input data. 

 

3 RESULTS AND DISCUSSION 

Table 3-1 shows the accuracy 

assessment for the twelve algorithms 

mention in Table 2-1. In the case of Gili 

Mantra Island, the RMS errors of the 

eleven extended methods (PC, LR, LRSPO, 

Table 2-1: Summary of 12 models reviewed in this paper 

 

Model Description and Equation Source 

Principle Component (PC) Modification algorithm based on Lyzenga’s SDB method, 
based on a rotational transformation of the transformed 
radiance (𝑋𝑖 ), resulting in a depth-dependent variable, 
i.e. the relative water depth (digital counts), in the 
direction of the highest variance.  

Van Hengel 
and Spitzer 
1991 

Linear Ratio (LR) Proposed to nails the problem of mapping shallow-water 
areas with significantly lower radiance than adjacent. 
Accordingly, the change in ratio because of depth is 
much greater than that caused by a change in bottom 
albedo, suggesting that different bottom albedoes at a 
constant depth will still have the same ratio. 

Stumpt et 
al. 2003 

Second-order Polynomial 
of Ratio Transform 
(LRSPO) 

Identified a ratio of wavebands (blue and green) that is 
constant for all bottom types. With these bands having 
different water absorptions, one band will have 
arithmetically lesser values than the other. Then, the log 
ratio of the two bands (blue, green) was plotted against 
known depth data to develop a second-order polynomial 
regression. 

Mishra et 
al. 2005 

Multiple Linear 
Regression (MLR) 

Modified from the simple linear regression (Lyzenga, 
1978). In before Lyzenga (1978) used the single band to 
build the prediction algorithm. The MLR analysis was 
conducted to depth as the dependent variable and the 
𝑋𝑖  of all visible bands as the independent variables. 

Lyzenga et 
al. 2006 

Multiple Linear 
Regression using Relaxing 
Uniformity Assumption on 
Water and Atmosphere 
(KNW) 

Modified the Lyzenga, et al 2006, assumed that the 
water and atmosphere is uniform.  

Kanno et al. 
2011 

Semiparametric 
Regression using Depth-
Independent Variables 
(SMP) 

The assumption in Lyzenga et al.’s method about the 
number of bottom types and is based on a premise that 
bottom radiance is discrete, is unrealistic. Then the 
elements of the bottom-type-dependent are included and 
used the semiparametric regression. 

Kanno et al. 
2011 

Semiparametric 
Regression using Spatial 
Coordinates (STR) 

Explicitly model by the spatial dependency of error (𝜀) 
due to the assumption of spatial uncorrelatedness of the 
error term. 

Kanno et al. 
2011 

Semiparametric 
Regression using Depth-
Independent Variables 
and Spatial Coordinates 
(TNP) 

Combined the extension of Relaxing Uniformity 
Assumption on Water and Atmosphere, Depth-
Independent Variables, Spatial Coordinates and uses the 
semiparametric regression model.  

Kanno et al. 
2011 

Multiple Non-Linear 
Regression (RF) 

Theoretically, the relation between depths and linearize 
surface radiance should be linear but a noise could 
cause a non-linear condition. Then random forest 
algorithm is used nail the nonlinear relation between 
depth and linearized radiance. 

Manessa et 
al. 2016a 

Bagging Fitting Ensemble 
(BAG) 

The ensemble methods aim at improving the predictive 
performance of a given statistical learning or model 
fitting technique. A model is fitted to each bootstrap 
sample and the models are finally aggregated by majority 
voting for classification or averaging for regression.  

Mohamed 
et al. 2017 

Least Squares Boosting 
Fitting Ensemble (LSB) 

The Least Squares Boosting Fitting Ensemble estimation 
algorithm is built by combining the concept of boosting, 
ensemble, and least square. 

Mohamed 
et al. 2017 

Support Vector 
Regression (SVR) 

SVR model is used because of their ability to generalize 
well with limited training sample that commonly delead 
with remote sensing. This regression model applied to 
estimate the depth based on the several pixels with 
known depth.  

Mohamed 
et al. 2017 
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MLR, KNW, SMP, STR, RF, LSB, BAG, and 

SVR) were higher compared to TNP 

method by 1.14, 1.16, 1.15, 0.78, 0.8, 

0.65, 0.09, 0.66, 0.99, 0.78, and 0.77m, 

or in relative terms, 112.9%, 114.9%, 

113.9%, 77.2%, 79.2%, 64.4%, 8.9%, 

65.3%, 98%, 77.2% and 76.2%, 

respectively.  

In the case of Menjangan Island, the 

RMS errors of the eleven extended 

methods (PC, LR, LRSPO, MLR, KNW, 

SMP, STR, RF, LSB, BAG, and SVR) were 

also higher compared to TNP method by 

0.26, 0.28, 0.28, 0.25, 0.22, 0.18, 0.21, 

0.04, 0.24, 0.24, and 0.21 m, or in relative 

terms, by 23.9%, 25.7%, 25.7%, 22.9%, 

20.2%, 16.5%, 19.3%, 3.7%, 22%, 22% 

and 19.3% respectively. These results 

indicate that the TNP algorithm effectively 

improve the accuracy of the other 

methods. 

Based on the results obtained from 

the image of two evaluated sites, the 

estimated depth was less accurate in 

Menjangan Island site. Two processes may 

have caused these accuracy problems. 

First, a measurement error of the single 

beam echo-sounder occurred especially in 

reef areas with significant morphology 

different such as Menjangan Island reef, 

where there were some delays in receiving 

the signal. Secondly, the significant error 

of depth measurement due to the data 

obtained in the afternoon, so high wave 

occurred. This shows that SDB for coral 

reef areas has a limitation under a specific 

condition, proper survey plan (times, 

instrument, and site) give a significant 

influence to produce an accurate SDB 

model. 

Scattergrams of the estimated water 

depth against the measured water depth 

for Gili Mantra Islands and Menjangan 

Island are shown in Figure 3-1. The 

superior accuracy of the TNP algorithm is 

obvious. Even the other eleven algorithms 

is based on physical and statistical 

principles, but still includes several 

assumptions that are often unrealistic 

and also not effective or appropriate 

statistical analysis, details as follows. MLR 

algorithm assumed that water quality and 

atmospheric condition is uniform, and the 

number of bottom types is less than a 

number of used bands are unrealistic for 

much shallow water environment 

 
Table 3-1: Statistic value of RMSE and R2 for depth estimation accuracy of twelve evaluated SDB 

algorithm (values in bold shows the model with the best accuracy) 
 

Method 
Gili Mantra Island Menjangan Island 

RMSE [m] R2 RMSE [m] R2 

Van Hengel and Spitzer (1991) PC 2.15 0.21 1.35 0.16 

Stumpt et al. (2003) LR 2.17 0.20 1.37 0.14 

Mishra et al. (2005) LRSPO 2.16 0.21 1.37 0.14 

Lyzenga et al. (2006) MLR 1.79 0.45 1.34 0.18 

Kanno et al. (2011) KNW 1.81 0.44 1.31 0.22 

SMP 1.66 0.53 1.27 0.27 

STR 1.10 0.79 1.30 0.23 

TNP 1.01 0.82 1.09 0.45 

Manessa et al. (2016a) RF 1.67 0.53 1.13 0.44 

Hassan et al. (2017) LSB 2.00 0.32 1.33 0.17 

BAG 1.79 0.44 1.33 0.18 

SVR 1.78 0.48 1.30 0.22 
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Figure 3-1:Scatter plot between estimated depth and real depth (Rsqr. is equal with R2) and redlines 
x=y 

 
 

(Kanno et al. 2011). RF algorithm used in 

this study is run on auto-tuning mode, 

however, to get the best result of random 

forest algorithm, it is necessary to do an 

optimization on the hyper-parameters 

(Manessa et al. 2016a). LR and PC 

algorithm focused on noise reduction 

(Stumpt et al. 2003 and Van Hengel and 

Spitzer 1991) but not consider that the 

linear regression works well with a 

number of explanatory variables. The ratio 

analysis on LR  and  PC  analysis  reduces 

the number of bands (explanatory 

variables), cause a linear regression of 

single explanatory variable. LRSPO 

algorithm used the same assumption with 

LR algorithm, where a ratio between the 

blue and green band is plotted with the 

known depth. Even Mishra et al. (2003) in 

the publication shows that the LRSPO 

algorithm works well (RMSE = 2,711 m 

and R2 = 0.92) but in this study, this 

algorithm could not produce a good 

accuracy (RMSE = 1.37 – 2.16 and R2 = 

0.14 – 0.21). KNW algorithm only focuses 

on non-uniform of surface and 

atmospheric condition (Kanno et al. 2011). 

SMP algorithm only including the 

elements of the bottom-type-dependent to 

nails the premise that bottom radiance is 

discrete (Kanno et al. 2011). STR is 

proposed only to overcome the 

assumption of spatial uncorrelatedness of 

the error term in Lyzenga’s method 

(Kanno et al. 2011). Finally, TNP algorithm 

is a model that nail all the unrealistic 

assumption mention above (Kanno et al. 

2011) and also used an advanced 

statistical analysis (semiparametric 

regression) to get a satisfactory result. 

However, it still has a limitation, which  

requires longer execution  times  than  the 

other algorithm. 

The TNP algorithm used in this 

study provided a better estimation of 

depth (Gili Mantra Island RMSE = 1.01 m, 

Menjangan Island RMSE = 1.09 m) than 

the other eight algorithms (Gili Mantra 

Island RMSE = 1.10 - 2.17 m, Menjangan 

Island RMSE = 1.09 - 1.37 m) under the 

conditions represented in the study region 

and images analyzed. This result is in line 

with the previous studies (Kanno et al. 

2011, and Arya et al. 2017). In the case of 

the same multispectral image with three 

visible bands (SPOT-7), the TNP algorithm 

yielded lower accuracy (RMSE = 1.14 m) 

(Arya et al. 2016) than those reported in 

this study. The higher RMSE in this study 

is likely due to differences in 

environmental conditions, including lower 

levels of suspended solids of coral reef 

environment. While for a multispectral 

image with higher spatial resolution, 
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namely Worldview-2, the TNP algorithm 

shows higher RMSE value (ranging from 

0.2 – 0.8 m) (Kanno et al. 2011). This 

underline just how important the spatial 

resolution and environment condition on 

depth estimation accuracy. 

 

4 CONCLUSION 

Various empirical models have been 

developed to convert multispectral image 

pixel values into depth estimates. This 

study compares twelve empirical SDB 

model in two coral reef environment of 

Indonesia shallow water. In the case of 

Gili mantra, Islands and Menjangan 

Island illustrated that depth estimation 

can be derived from the SPOT 6 

multispectral image with accuracy about 

1-2 m (RMSE) in water depth down to 15 

m. These depth estimation data are useful 

for many purposes, such as conservation, 

wave simulation, and coastal zoning. 

Moreover, as shown in this study, a 

correct empirical algorithm to be chosen is 

played an important role to produce an 

accurate bathymetry map. The accuracy 

different could reach 3.7 - 114.8% more or 

less accurate for each empirical algorithm. 

The result of comparisons suggests that 

the overall performance of Semiparametric 

Regression using Depth-Independent 

Variables and Spatial Coordinates 

algorithm can produce more accurate 

depth estimation. This study also found 

that the effect of wave gave a negative 

effect on the accuracy of SDB model. Then 

a wave correction is strongly suggested to 

be applied to a site with a strong wave 

influence or exclude an image with that 

condition. 
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