
International Journal of Remote Sensing and Earth Sciences Vol. 17  No. 1 June 2020: 65-74 

65 
http://dx.doi.org/10.30536/j.ijreses.2020.v17.a3316   @National Institute of Aeronautics and Space of Indonesia (LAPAN) 

AN ENHANCEMENT TO QUANTITATIVE PRECIPITATION 

ESTIMATION USING RADAR-GAUGE MERGING  

(CASE STUDY: EAST JAVA) 

 
Abdullah Ali1*, Gumilang Deranadyan, Iddam Hairuly Umam 

1Remote Sensing Data Management Division, Center for Public Weather Service, Indonesia Agency 

for Meteorology Climatology and Geophysics (BMKG)  

*e-mail: alibinakhsan@gmail.com 

Received: 11 March 2020; Revised: 22 June 2020; Approved: 24 July 2020 

 

 

 

Abstract. Quantitative precipitation estimation (QPE) provides valuable information for hydrology 

purposes. Its dense spatial and temporal resolution can be combined with surface observations to 

enhance the accuracy of estimations. This paper presents an enhancement to QPE achieved by 

adjusting estimation drawn from the Indonesian Agency for Meteorology, Climatology, and Geophysics 

(BMKG) weather radar network at Surabaya, to real-data observations from 58 rain gauges. The Mean 

Field Bias (MFB) method is used to determine the correction factor through the difference between 

radar estimations and rain-gauge observation values. The correction factor obtained at each gauge 

points is interpolated to the entire radar grid in a multiplicative adjustment. Radar–gauge merging 

results in a significant improvement, revealed by the decreasing of mean absolute error (MAE) and 

false alarm ratio (FAR) by about 40% as well as increasing the possibility of detection (POD) by more 

than 50% in all rain categories (light rain, moderate rain, heavy rain and very heavy rain). This 

performance improvement is likely to provide significant benefits for operational use by BMKG and 

other hydrological information users. 
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1  INTRODUCTION 

The need for rainfall accumulation 

estimation tools with high-level spatial 

resolution is growing along with the 

increasing application of hydrological 

and weather forecast models. These tools 

are used widely in water resource 

analysis, flood forecasting and warnings 

over sparsely gauged catchments (e.g. 

Aghakouchak, Habib, & Bardossy, 2010; 

Zhu, Xuan, & Cluckie, 2014). Accurate 

accumulation values at tight resolution 

levels will significantly impact on the 

performance of these models.  

As observation instruments 

measuring the backscattered power from 

hydrometeorology particles at particular 

heights, weather radar can provide 

estimated values of precipitation at  

 

surface levels. Even though such radar 

have high spatial and temporal 

resolution, there are still many sources 

of error that can affect the accuracy of 

the rainfall estimation values they 

produce. Sources of error include 

variation in Z-R relationship, errors in 

estimating radar reflectivity factor (Wu 

Hsu, Lien, & Chang, 2015; Wu et al., 

2015), difference in radar–gauge 

sampling (Wilson & Brandes, 1979), 

natural variability of drop-size 

distribution, and instrument errors (Joss 

& Wadvogel, 1990). 

The reflectivity observations of 

radar itself can experience several errors, 

such as calibration errors, radio emitter 

interferences and contamination from 
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non-meteorological echo, as well as the 

effect of distance attenuation or 

increased sampling volume due to beam 

broadening (Goudenhoofdt & Delobbe, 

2009). Uncertainty increases when the 

estimated rainfall process is being 

carried out on the surface, resulting from 

non-uniform vertical reflectivity profile 

(VPR) and the Z-R relationship. These 

sources of uncertainty can be minimized 

by utilizing point data from surface rain-

gauge observations, as these have a 

higher degree of accuracy. Extensive 

spatial observation range data from 

radar and accurate point observation 

data from rain gauges can be combined 

to enhance the value of estimations. 

Radargauge merging has been 

carried out since the beginning of 

weather radar operations in the 1970s, 

and many complex methods have been 

applied to merge radar and rain-gauge 

data, including co-kriging (Krajewski, 

1987; Sun et al., 2000), objective 

statistical analysis methods (Pereira Fo, 

Crawford, & Hartzell, 1998) and Kalman 

filtering approach (Todini, 2001; Seo & 

Breidenbach, 2002; Chumchean, 

Sharma, & Seed, 2006). Before the 

merging is executed, quality control of  

the radar data must be carried out, such 

as elimination of ground clutter, 

attenuation correction and VPR 

correction (e.g. Germann, Galli, 

Boscacci, & Bolliger, 2006; Tabary, 

2007; Uijlenhoet & Berne, 2008), 

because adjustments to uncorrected 

radar data do not produce significant 

corrections to QPE. Rain-gauge density 

is also very influential on the adjustment 

process, as tested by Sokol (2003) and 

Chumchean et al. (2006). 

The objective of this research is to 

enhance the accuracy of QPE obtained 

from weather radar by merging it to 

surface observations (rain-gauge data) 

that represent more accurate 

accumulation values. The final result of 

this study is expected to be that radar–

gaugemerged QPE has better accuracy 

than radar-only QPE. 

 

2 MATERIALS AND METHODOLOGY 

In this study, C-Band single 

polarimetric radar manufactured by 

Gematronik Radar with maximum range 

of 240 km, 250m spatial resolution and 

nine elevation angles is used (Figure 2-

1).  

 
Figure 2-1: Surabaya radar scan strategy 

 
Table 2-1: Radar hardware specification 

Parameter Value 

Radar site name Surabaya 
Latitude -7.41028° S 
Longitude 112.76056° E 
Altitude 3 m 
Tower height 23 m 
Frequency 5640 H 
Beam width <1° 
Pulse width 0.5–2.0 μs 
PRF min 250 Hz 
PRF max 1200 Hz 
Signal processor GDRX-SP 
Transmitter type Coaxial magnetron 
Polarization Single 
Installation year 2006 
Manufacturer Selex SI 

Gematronik Radar 
Z-R relationship 200 R1.6 

 

Radar hardware specification is 

shown in Table 2-1. The topography 

around the radar site is variable and 

contains six volcanoes: Mt. Arjuna, Mt. 

Kawi, Mt. Bromo, Mt. Ngliman and Mt. 

Roar. The beam-blockage analysis based 

on digital elevation data from the SRTM 

static model is shown in Figure 2-2. The 

most significant blocking is in the 

southerly direction, derived from Mt. 

Arjuna, Mt. Kawi and Mt. Bromo. 
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2.1 Location and Data 

The study area comprises 250 km 

around Surabaya. The weather radar 

used covers all of the East Java region, 

except those areas that are blocked by 

terrain. Rain-gauge distribution overlaid 

with beam-blockage analysis at the two 

lowest elevations is shown in Figure 2-3. 

There are 145 rain gauges in East Java 

province that are covered by the radar’s 

maximum observation range, but 34 of 

these are blocked at 0.5° elevation, and 

10 are blocked at 1.5° elevation angle. 

Raw data obtained by the Surabaya 

weather radar with Rainbow5 format is 

used and calculated to hourly QPE and 

rewritten to NetCDF format. Full hourly 

QPE data for the day is then calculated 

to create the one-day QPE to be 

adjusted. 

In the adjustment process, the rain 

gauges used are only those that operate 

for 24 hours, with those that do not 

cover the full 24-hour period because of 

instrumentation problems or data-feed 

issues being excluded. 

 

 
Figure 2-2: Beam-blockage analysis at Surabaya radar. 
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Figure 2-3: Rain-gauge distribution and blockage percentage 

 

Because of the very significant 

effect of distance on precipitation 

estimation, this study only uses rain 

gauges at a distance of up to 150 km 

from the weather radar. In total, 58 rain 

gauges were used, and the case studies 

used are for events detected by weather 

radar on 17 and 19 March 2019.  

 

2.3  Methods 

Several methods have been 

developed to adjust radar data with rain-

gauge data. In this paper, the mean field 

bias (MFB) method is used. It is 

important to note the amount of radar 

data sampling that will be merged with 

rain-gauge data (Villarini, Mandapaka, 

Krajewski, & Moore, 2008). In the study 

by Goudenhoofdt and Delobbe (2009), 9-

pixel radar data from around the rain-

gauge network was used to represent the 

value of rainfall accumulation at the 

corresponding rain-gauge points, and 

this is the method followed in this study. 

The use of 9 pixels for the corresponding 

raingauges can minimize the effect of 

wind gusts on droplets (Lack & Fox, 

2007). The accumulated value used 

must be more than 1mm both for radar 

and rain gauges (Goudenhoofdt & 

Delobbe, 2009). 

 
Figure 2-4: Research flowchart 

 

The conversion of reflectivity into 

rainfall uses the Marshall Palmer Z-R 

relationship (Equation 2-2) with the 

input of maximum reflectivity values 

(Nova, 2017).  

 

 

(2-1) 

 

 (2-2) 
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With Z  measured in mm6/m3 and 

R in mm/h. The calculation of hourly 

QPE is performed using Equation 2-2 

(Selex SI, 2017).  

Equation 2-3 is used to calculate 

the QPE from rain intensity obtained 

from Equation 2-2. 

 

 (2-3) 

Where Ai is the accumulation of 

rain of the ith steps, (ti – ti-1) is the time 

step (time difference between two 

consecutive data in hours), and (Ri + Ri-1) 

is the accumulation of consecutive data. 

In one hour, there are six data, since the 

time difference between consecutive data 

is 10 minutes. After an hourly 

accumulation of radar QPE and rain-

gauge data are obtained, adjustment is 

carried out using MFB, with the 

assumption that radar estimates are 

affected by a uniform multiplicative error 

that can result from bad electronic 

calibration or an erroneous coefficient in 

the Z-R relationship. 

The MFB adjustment factor can be 

formulated as Equation 2-4: 

 

 

(2-4) 

 

Where N is the number of radar–

gauge pairs, and Gi and Ri are the 

rainfall values detected by the gauge and 

radar. 

One-hour adjusted QPE is then 

accumulated for one day and verification 

is then performed on that one-day data. 

Verification begins with plotting a 

correlation graph between the 

accumulation of radar and rain-gauge 

data. The quality of the adjustment is 

measured through the parameter of root 

mean squares error (RMSE) and mean 

absolute error (MAE), as shown in 

Equations 2-5 and 2-6. 
 

 
(2-5) 

 

 

(2-6) 

 

Contingency table verification is 

also performed to obtain the possibility 

of detection (POD), false alarm ratio 

(FAR), and proportion correct (PC) values 

for the specified rainfall accumulation 

category. The accumulation categories 

refer to the classifications used by BMKG 

slight rain = 5–20 mm/day; moderate 

rain = 20–50 mm/day; heavy rain = 50–

100 mm/day; and very heavy rain = 

more than 100 mm/day. The 

contingency table is presented in Table 

2-2, while Equations 2-7, 2-8 and 2-9 

show the POD, FAR and PC calculations, 

respectively. The complete research 

flowchart is presented in Figure 2-4. 
 

Table 2-2: Contingency table for radar–gauge 

adjustment 

 

Radar 
Gauge 

Yes No 

Yes Hit (H) False (F) 

No Miss (M) Correct negative (N) 

 
 

 

(2-7) 

 

 

(2-8) 

 

 

(2-9) 

 

3 RESULTS AND DISCUSSION 

Several quality controls were 

applied to the radar data through the 

pre- and post-processing tools contained 

in the Gematronik Radar system, 

including speckle removal, ground-

clutter removal and attenuation 

correction. Radar data that remains 

exposed to significant non-meteorological 

echoes will result in very overestimated 

QPE, and in such situations, adjustment 

by gauge itself will have no significant 
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effect. Figure 3-1 presents the results of 

unadjusted and adjusted one-hour QPE 

for the first case study on 17 March 

2019 at 11 UTC, at which time the most 

significant rainfall occurred. The 

calculation of one-day QPE is carried out 

after the adjustment is performed for 

each hour’s QPE. 

The MFB method does not account 

for distance as the weighting value to the 

correction factor, so it will be taken 

across the entire grid. There is an 

increasing rainfall accumulation after 

the adjustment. This increment is 

adjusted to the hourly gauge 

accumulation observed. Scatter plot 

verification at all gauges used (Figure 3-

2) shows that radar data without 

adjustment (raw data) has an 

underestimated rainfall accumulation, 

indicated by its fit slope (blue line) being 

to the right (under) the centre line. This 

underestimated value is mostly probably 

caused by an error in Z-R relationship 

and the absence of differentiation 

estimation between convective and 

stratiform rain. After the adjustment is 

performed, the adjusted-fit slope (red 

line) shows very significant improvement 

it approaches the centre line meaning 

that the estimation is near perfect, 

though it is still slightly underestimated 

from the observed accumulation value.  

The scale of error value can 

determine how far the adjustment 

improves the raw data. After the 

adjustment for all hours in one day, 

MAE, ME and RMSE are calculated. For 

the first case-study day (17 March 2018), 

the values of MAE, ME and RMSE for the 

radar data without adjustment are 

22.76, 5.20 and 4.49 mm, respectively. 

After MFB adjustment these values 

become 13.15, 4.40 and 2.61 mm. 

Similarly to the first case, the second 

case (19 March 2019) also shows 

decreasing error, with MAE, ME and 

RMSE of 34.14, -23.22 and 8.32 mm, 

respectively, before adjustment and 

13.06, -5.90, and 5.0 after adjustment.  

  

(a) (b) 
Figure 3-1: The spatial results of the gauge adjustment at 17 March 2019 11 UTC, when the rain 

distribution is the most significant: (a) one-hour QPE unadjusted; (b) one-hour QPE 

MFB adjusted. 

 



An Enhancement To Quantitative… 

International Journal of Remote Sensing and Earth Sciences Vol. 17 No. 1 June 2020  71 

  

(a) (b) 

 

 
(c) (d) 

Figure 3-2: Scatter plot verification at all gauge used. The adjustment results a decreasing error 

value (a). Scatter plot verification for the first case (17 March 2019) while (c) for the 

second case (19 March 2019). (b) Contingency verification for the first case while (d) 

for the second case. 

 

These results indicate that MFB 

adjustment can give better results in 

accumulation estimation. The RMSE 

value after MFB adjustment shows that 

the standard deviation of the residual 

between radar and gauge observations is 

only around 2.6 mm. Estimation 

accuracy is reinforced by the decreasing 

value of the MAE. The error value 

decreases about 40–60% compared to 

unadjusted radar accumulation (from 

22.76 mm to 13.15 mm for the first case, 

and from 34.14 mm to 13.06 mm for the 

second case). This is a very good result, 

indicating that the adjusted radar QPE 

shows little error at a high spatial 

resolution. 

Contingency table verification is 

performed for the adjustment process, 

and the values of POD, FAR and PC 

before and after MFB adjustment are 

shown in Figure 3-3. When the radar 

one-day accumulation value gives the 

same value as the accumulated rain-

gauge data, this is counted as a hit. A 

value is considered as a miss when the 

estimation is overestimated or 

underestimated compared to the selected 
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rainfall accumulation classification. For 

example, moderate rain is observed by a 

gauge (accumulation of 30 mm/day) but 

the radar accumulation estimates more 

than 50 mm/day or less than 20 

mm/day, this will be considered as a 

miss. POD can represent the radar’s 

ability to detect the specific rainfall 

classification, while FAR describes how 

often the radar gives overestimated 

values. 

Before rain-gauge data is merged, 

the first case gives the value of POD for 

each category (light rain, moderate rain, 

heavy rain, and very heavy rain) as 0.45, 

0.33, 0 and 0, respectively. After MFB 

adjustment is applied, the POD values 

become 0.91, 0.83, 0.6 and 1.0. For the 

second case, the values of POD for 

unadjusted QPE at each category are 

0.42, 0.67, 0 and 0 and after adjustment 

become 0.67, 0.83, 0.50 and 0.50. 

There are quite large improvements 

of the POD calculations. The low POD 

value of unadjusted radar QPE in all rain 

categories is due to the underestimation 

of accumulation. There is no successful 

detection of heavy and very heavy rain 

events, as shown by the two zero POD 

values. After the adjustment is 

performed, all rain classes have more 

than 0.5 POD. This increment is coupled 

with PC score and accompanied by 

decrement in FAR score. Before the 

adjustment, FAR value for one-day 

accumulation exceeds 0.85, 0.76, 1.0 

and 0 for the first case for each rain 

category. These values are quite high, 

and again, underestimation in 

accumulation is causing this. The 

decrement is compelling, with the 

adjustment decreasing FAR scores to 

0.57, 0.46, 0 and 0 for light rain, 

moderate rain, heavy rain, and very 

heavy rain, respectively. For the second 

case, unadjusted QPE gives FAR values 

of 0.52, 0.82, 0 and 0 for each rain 

category, becoming 0.20, 0.55, 0 and 0 

after adjustment. 
 

4 CONCLUSION 

The results of the rain-gauge 

adjustment to the hourly radar QPE and 

continued to the one-day QPE show 

significant incremental improvement in 

performance. Although the adjustment 

method does not take into account the 

distance of rain gauges from the radar 

pixels, the error value can be reduced 

significantly, by approximately 40%. The 

performance also improves more than 

50% in all rain categories. The number 

and density level of rain gauges also 

significantly affects the correction 

process, with higher density of the rain-

gauge network providing more significant 

correction. The presence of the rain-

gauge selection filter is also influential 

on the adjustments. It is necessary to 

carry out further research into 

adjustment methods by taking into 

account rain-gauge distance to the radar 

pixels. 
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