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Abstract. Land Surface Temperature (LST) is a parameter to estimate the temperature of the Earth’s 

surface and to detect climate change. Papua New Guinea is a tropical country with rainforests, the 

greatest proportion of which are located on the island of New Britain. Hectares of rainforests have been 

logged and deforested because of infrastructure construction. This study aims to investigate the change 

in land surface temperatures on the island from 2000 to 2019. The temperature data were taken from 

National Aeronautics and Space Administration (NASA) Terra satellites and were analysed using two 

statistical models: spatial and temporal. The spatial model used multivariate regression, while the 

temporal one used autoregression (AR). In this study, a cubic spline fitted curve was employed because 

this has the advantage of being smoother and providing good visuals. The results show that almost all 

the sub-regions of New Britain have experienced a significant increase in land surface temperature, with 

a Z value of 7.97 and a confidence interval (CI) of 0.264 – 0.437. The study only investigated land surface 

temperature change on New Britain Island using spatial and temporal analysis, so further analysis is 

needed which takes into account other variables such as vegetation and land cover, or which establishes 

correlations with other variables such as human health. 
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1 INTRODUCTION 

The systematic changes in the long-

term state of the atmosphere which have 

been taking place for decades or longer is 

known as climate change (Public Health 

Institute, 2016). The statistical 

description of weather and the related 

conditions of oceans, land surfaces and 

ice sheets constitute climate in the 

broadest sense (Australian Academy of 

Science, 2015). Climate change is a 

complex problem that is occurring in  

around the world. It impacts on various 

sectors, such as agriculture, forestry, 

coastal ecosystems, human health, 

fisheries and water (Weatherdon, 

Magnan, Rogers, Sumaila, & Cheung, 

2016). When it lowers water quality and 

quantity, for example, this will result in 

more water-borne and vector-borne 

disease. It will also increase the potential 

for crop failure because agriculture 

requires 90% of available water for 

irrigation purposes in many countries 

(Ahmed, Scholz, Al-Faraj, & Niaz, 2016).  

Papua New Guinea (PNG) is a 

country with many tropical rainforests, 

which are mostly found on New Britain 

Island (Bryan & Shearman, 2015). PNG is 

prone to a variety of natural hazards, 
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such as cyclones, floods and droughts. 

Some of these are expected to increase in 

frequency, magnitude and intensity due 

to climate change (International 

Organization for Migration, 2015). An 

indicator used to predict climate change 

is Land Surface Temperature (LST). 

According to a study by Samanta (2009), 

high land surface temperatures have been 

found in Morobe Province on Papua New 

Guinea Island. Oyoshi, Akatsuka, 

Takeuchi, & Sobue (2014)  state that the 

LST on the island of Papua New Guinea in 

2007 was more stable than in Indonesia 

and Thailand, whereas Australia 

experienced temperature changes in a 

short period of time. One of the causes of 

significant LST changes is the sudden 

transformation of land use and land cover 

pattern as the result of rapid urban 

growth (Choudhury, Das, & Das, 2019). 

LST data were obtained from 

thermal radiation emitted by MODIS 

(Moderate Resolution Imaging 

Spectroradiometer), which observes land 

surfaces at instant viewing angles (Wan & 

Li, 2010). MODIS is a NASA sensor 

aboard the Terra and Aqua satellites. 

Terra MODIS retrieves data at 10:30-

12:00 a.m. and p.m. (daytime/nighttime) 

local time, while Aqua MODIS captures 

images from 01:00 to 03:00 a.m. and p.m. 

(daytime/nighttime) (Yang, Cai, & Yang, 

2017). LST is a highly variable aspect of 

the Earth’s surface, in both space and 

time. It analysed with the data spatially 

and temporally due to the fact that space 

is spatial and time is temporal (Luintel, 

Ma, Ma, Wang, & Subba, 2019). 

In time series, the concept of 

autoregressive models refers to ones that 

are developed by regressing on previous 

values (Pal & Prakash, 2017). Many 

processes which are observed through 

time exhibit autocorrelation, which can 

be described by using the best 

autoregressive process (Paolella, 2019). 

The LST data correlated between time and 

space are analysed with multivariate 

regression. In such analysis, the 

relationships between independent and 

dependent variables are predicted in 

order to analyse the effects of the former 

on the latter (Mansouri, Feizi, Jafari Rad, 

& Arian, 2018). Land surface temperature 

is analysed using multivariate regression 

to examine each point based on latitude 

and longitude. The cubic spline model is 

compatible with this process because 

there is an assumption that seasonal 

patterns are the same every year, as well 

as the fact that changes in other 

parameters such as land cover change 

have a direct or indirect effect on 

consistently increasing or decreasing LST 

(Wongsai, Wongsai, & Huete, 2017). The 

best cubic spline model is determined by 

the location and point of the knot. In this 

study, the cubic spline used 0-knot, 4-

knot, and 7-knot. The study aims to 

investigate LST changes on New Britain 

Island from 2000 to 2019 using 

autoregression (AR) and multivariate 

regression with a cubic spline. 

 

2 MATERIALS AND METHODOLOGY 

This study employs secondary data 

from the NASA MODIS (Moderate 

Resolution Imaging Spectroradiometer) 

website. The research focuses on the LST 

of New Britain Island from 2000 to 2019. 

A flowchart of the study data analysis is 

shown in Figure 2-1. 

 

Figure 2-1: Data analysis flowchart 
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2.1 Location and Data 

The study area was on New Britain 

Island, which is part of Papua New 

Guinea (PNG). The island was formed 

from volcanic activity, which makes it the 

most productive region for the 

development of geothermal energy 

resources in Papua New Guinea (PNG) 

(Lahan, Verave, & Irarue, 2015). 

Identification of geothermal resources can 

be made by using remote sensing with 

LST values (Tampubolon, Abdullah, San, 

& Yanti, 2016). Geographically, the island 

of New Britain is located from 

148°17'56.20" E to 153° 7'31.50" E, and 

6°17'55.88" S to 2°19'57.57" S. It is 

located to the east of the main island of 

Papua New Guinea and its size is around 

36,520 km2.  It is the second largest 

island of Papua New Guinea. Its tropical 

climate is divided into humid and rainy 

seasons. The rainy season occurs from 

May to October, with the average peak of 

the rainy seasons occurs from July to 

September. Climate transition occurs in 

April and November. 

 
Figure 2-2: Map of New Britain Island with 

nine sub-region locations (circles) 

based on longitude and latitude. 

 

Figure 2-2 shows the sample of LST 

data in relation to sub-regions; these data 

from the nine sub-regions are referred to 

as sampling points. Nine such regions 

were used as sample points to avoid 

spatial correlation.  The sub-region 

samples were expected to be unbiased 

and able to represent the population of 

the whole islands. The island consists of 

nine sub-regions with point locations 

based on calculated longitude and 

latitude. Spatial correlations can occur 

between sub-regions and must be 

avoided; therefore, the data were collected 

minimum of 3 x 3 km2 area, but the 

measurements were made with 7 x 7 km2 

area. The Terra satellites of NASA take 

pictures based on pixels. A pixel 

represents 1 x 1 km2 and each sub-region 

comprises 49 pixels. In the time series, 

there were 907 observations of each sub-

region (February 2000 to November 2019, 

which covered precisely 19 years of 

observational data. 

 

2.2 Data Source 

The New Britain Island LST data 

from 2000 to 2019 were obtained free of 

charge from satellite records. The data 

were recorded in the Earth Observing 

System Data and Information System 

(EOSDIS) and observed every 8 days. LST 

uses remote sensing technology to 

observe changes in temperature data. The 

data are managed by Oak Ridge National 

Laboratory (ORNL) and are available on 

the MODIS website. 

MODIS is run by NASA, and 

provides Land Surface Temperature and 

Emissivity (LST&E) data. The LST data 

were obtained from the MODIS website 

https://modis.ornl.gov. The initial stage 

to obtain the data is to sign in using a 

personal account. The user then needs to 

determine the longitude and latitude of 

the point from which the data will be 

taken. These are available on Google 

Earth and can be calculated using tools 

on the MODLAND website 

https://landweb.modaps.eosdis.nasa.go

v/cgi-bin/developer/tilemap.cgi to find 

vertical tiles, horizontal tiles, lines, and 

samples. The distance between sub-

regions must be the same for the 

calculations based on lines and samples. 
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MODIS has many variables, each of 

which has a code for observation 

purposes. Land Surface Temperature and 

Emissivity (LST&E) have the code 

MOD11A2, this provides daytime LST 

data with observations every 8 days for 19 

years. MODIS LST data are a 

geometrically-corrected product with 

special utility programs (Busygin & 

Garkusha, 2013). MODIS Terra data are 

produced with a generalised split-window 

LST algorithm that is used to minimise 

the influence of the atmosphere on 

surface temperature. The data from 

longitude and latitude points input by 

selecting the MOD11A2 code are sent via 

email in CSV format. Data analysis can be 

made using the point data. The spatial 

resolution of the LST data used for each 

region was a 1 km x 1 km grid (Sharma, 

Tongkumchum, & Ueranantasun, 2018). 

 

2.3  Statistical Methods 

2.3.1  Seasonal Pattern 

The curve used to smooth 

periodicity was a spline. A cubic spline 

function is a piecewise cubic polynomial 

with continuous second derivatives and is 

smoothest among all the functions in the 

sense that it has a minimal integrated 

squared second derivative, so it is fitted 

using linear least squares regression (Me-

Ead & McNeil, 2019). LST has the 

characteristics of seasonal patterns; in 

light of several considerations it was 

decided that the most appropriate model 

for use in the study was the cubic spline, 

with certain boundary conditions that 

ensured smooth periodicity and reduced 

the unbiased results in time series by 

outliers  (Wongsai et al., 2017). Each grid 

in MODIS includes LST time-series data, 

so the cubic spline could be used for all 

the LST time-series in each grid (Sharma 

et al., 2018). The ability to handle any 

amount of missing data is one of the 

advantages of using the cubic spline 

function (Me-Ead & McNeil, 2019). 

Therefore, the model for the function 

(Wongsai et al., 2017) is: 

 

𝑠(𝑡) = 𝑎 + 𝑏𝑡 + ∑ 𝑐𝑘[(𝑡 − 𝑡𝑘)+
3 − 𝑑(𝑡 − 𝑡𝑝−2)

+

3

𝑝

𝑘=1

+ 𝑒(𝑡 − 𝑡𝑝−1)
+

3
−  𝑓(𝑡 − 𝑡𝑝)

+

3
] 

 

(2-1) 

 

For each sub-region, seasonal 

variability is believed to be constant, and 

the pattern shown by plotting the average 

response variable value for each sub-

region every eight days at several years. 

Seasonal temperature patterns have been 

found by the use of the cubic spline 

function by selecting the right number of 

knots (Sharma et al., 2018). Such knots 

are based on the location and number, 

which must be chosen correctly because 

this is an important process. More knots 

would result in a smoother covariance 

surface, but more parameters would need 

to be estimated (Wongsai et al., 2017). 

This study used 0, 4, and 7 knots because 

these showed the highest r-squared value 

and the lowest p-value. The knots were 

represented by three curves, with 0 knot 

being linear, and 4 and 7 knots being the 

spline. 

 

2.3.2  Time Series Correlation Models 

There are two possible approaches 

to seasonal series: one is to decompose 

the series into a trend, a seasonal 

component and residual, and the other is 

to apply non-seasonal methods to the 

residual component (Venables & Ripley, 

2002). Statistical tests related to the time 

series method include the autoregressive 

(AR) test. Analysis of autoregression can 

predict future values that may affect past 

values. Therefore, the AR model is the 

best for describing the value of the event. 

The autoregressive model is a stochastic 

model that is very useful to represent 

occurring series (Box, Jenkins, & Reinsel, 

2015).  

Autoregressive models are used to 

predict model curves according to the 
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correlation of the time series (Venables & 

Ripley, 2002). Autoregression can 

determine seasonal patterns because 

times series analysis has two goals: to 

identify the observation and to forecast 

future data. The effect of lagged values 

can cause problems such as 

autocorrelation. Many processes that are 

observed through time exhibit 

autocorrelation, or the tendency for the 

observation in the current time period to 

be related, or correlated, to previous 

observations, usually in the very recent 

past (Paolella, 2019). If in the first-order 

there is obvious autocorrelation, then it is 

likely that there will be autocorrelation in 

the second-order autoregression 

(Montgomery, Jennings, & Kulahci, 

2015).  

 

2.3.3 Adjusting for Spatial Correlation   

Models 

The other statistical test is 

multivariate regression. Spatial analysis 

such as LST estimation in the sample 

region with nine sub-regions employed a 

multivariate regression model. 

Multivariate regression is a natural 

extension of multiple regression because 

both methods aim to explain possible 

linear relationships between certain input 

and output variables. Each output 

variable can be affected by exactly the 

same set of inputs (Izenman, 2013). 

Multivariate regression is performed 

using prescribed first-order 

autoregression, AR(1), a model for noise 

𝜀(t) (Fyfe, Gillett, & Thompson, 2010). The 

estimation used in the model is the 

multivariate normal maximum likelihood 

and ordinary least squares (OLS). The 

equation of multivariate regression 

(Leufen & Schädler, 2019) is: 

 

𝑦𝑗 = ∑ 𝛽𝑖𝑗 .

𝑖

𝑥𝑖 +  𝜖𝑗 
(2-2) 

 

For the spatial method, weighted 

least squares (WLS) was added to the 

statistical test, because such a regression 

method can be used when the OLS 

assumption of constant error variation is 

violated and is less sensitive to big 

changes in small parts of the observations 

(Wongsai et al., 2017).  

Within the regression model used 

heteroscedasticity (non-variance) exists, 

so WLS can be used to resolve this 

(Kantar, 2016). In addition, WLS is used 

when the variance is non-constant 

(Tharmalingam & Vijayakumar, 2019). A 

multivariate regression model was 

developed to show the relationship 

between temperature and time over the 

19 years, with a 95% confidence interval. 

For most linear regression, Z is 

considered to consist of entries following 

a normal distribution with zero mean 

(Zhang, Shi, Sun, & Cheng, 2017).  

 

3 RESULTS AND DISCUSSION 

Land Surface Temperature (LST) is 

a variable that can indicate climate 

change because it can affect the Earth's 

ecosystems, such as glaciers, ice sheets, 

and vegetation. Climate change is an 

alteration in climate patterns over a long 

period of time and may be due to a 

combination of natural and human 

causes (Australian Academy of Science, 

2015). LST changes occur slowly over 

time because many other associated 

aspects also change, such us 

environmental or ecosystem conditions. 

Temperature variations were observed in 

nine sub-regions on New Britain Island 

during the period 2000 to 2019. To 

ascertain the temperature changes in 

each sub-region, LST observations were 

made every 8 days during the period 2000 

to 2019 through the MODIS Terra 

satellite. The research is related to LST 

using spatially and temporally correlated 

data analysis and seasonal LST patterns 
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were analysed using a cubic spline 

(Wongsai et al., 2017).  

 

Figure 3-1: Spatial analysis of LST day changes 

on New Britain Island based on 

observations from 2000 to 2019 

 

Figure 3-1 illustrates the LST 

changes in nine sub-regions (shown by 

circles) and one region on New Britain 

Island. Sub-region 1 is located in the top 

left-hand corner, while sub-region 9 is 

located in the bottom left-hand corner of 

the map. The location of the sub-regions 

is from top left to the right, and then from 

bottom right to the left. In the LST, there 

were increased temperatures in the 

regions between 2000 and 2019. The 

eight sub-regions which experienced an 

increase are indicated by a red circle, 

while the one which remained stable is 

indicated by a green circle. Specific 

results for each sub-region can be seen in 

the table 3-1. A red circle shows an 

increase in LST because the Z value is 

higher than 1.96, while the green circle 

represents stable LST because the Z value 

is lower than 1. There was not only an 

increase in land surface temperatures, 

but also in surface air and sea surface 

temperatures on Papua New Guinea 

Island. During the period 1950-2009, it is 

known that there were warming trends in 

surface air temperatures, whereas the sea 

surface temperature rose gradually since 

1950 (CSIRO & Australian Bureau of 

Meteorology, 2011). 

Table 3-1 shows that the LST-day 

increased from 2000 to 2019 in the sub-

regions based on longitude and latitude. 

The region on New Britain Island 

experienced LST changes with a Z value 

of 7.97. The highest LST change was in 

sub-region 9, with a value of mean 

inc/dec of 0.56 ℃ and a p-value 0.003, 

while the lowest LST change was in sub-

region 2, with a value of mean inc/dec of 

0.118 ℃ and a p-value of 0.433. Sub-

region 9 is located in the west of New 

Britain Province. Changes to warmer LST 

conditions are associated with rising 

concentrations of greenhouse gases and 

deforestation. It has been shown that the 

road construction planning that has 

occurred in the east and west of New 

Britain has put lowland forests at risk, 

meaning they will release substantial 

carbon into the atmosphere and set the 

stage for future emissions (Alamgir et al., 

2019). Land use and land cover on New 

Britain Island is analysed in a study by 

Lamo et al. (2018).

Table 3-1: Mean of LST change in the nine sub-regions of New Britain Island 

Sub-region Longitude Latitude Mean Inc/Dec P 

1 150.203 -2.554 0.354℃ 0.017 

2 150.96 -2.746 0.118℃ 0.433 

3 151.877 -3.279 0.353℃ 0.013 

4 152.864 -4.563 0.414℃ 0.02 

5 151.877 -4.563 0.299℃ 0.006 

6 150.96 -5.704 0.323℃ 0.046 

7 150.203 -5.704 0.449℃ 0 

8 149.453 -5.704 0.339℃ 0.003 

9 148.699 -5.704 0.56℃ 0.003 
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Figure 3-2: Seasonal pattern of Land Surface Temperature (LST) day with cubic 

spline function in the nine sub-regions of New Britain Island from 

day 1 to 365 

 

Figure 3-2 represents the LST-day 

seasonal patterns in New Britain Island 

observed from 2000 to 2019. There were 

19 points for each day as observations 

took place for 19 years. Each panel shows 

a sub-region, so there are nine panels 

with eight knots with a positive shape (+) 

on each panel. A smooth spline curve in 

the form of a red line is derived from the 

cubic spline model to produce an r-square 

of between 0.05 to 0.23. In sub-regions 1, 

2, 3, 5, 7 and 8, there was an increase of 

LST in October to November (days 286-

305). On the other hand, in sub-regions 

4, 6, and 9 there was an increase from 

October to December (days 286-363), 

with stability at the end of the period. 

With regard to the seasonal pattern, there 

was also a decrease in LST on 

approximately days 172-210 because 

those days in June to July correspond to 

the rainy season. This season has a 

cooling effect on LST because the land is 

usually covered with vegetation 

(Khandelwal, Goyal, Kaul, & Mathew, 

2018). This shows that seasonal patterns 

do not occur very often in the sub-regions 

of New Britain Island. The statistical 

results with R2 ranged from 5% - 23%, 

with an average of around 10%. 

Figure 3-3 shows the season- 

adjusted time series for LST-day on New 

Britain Island. Three kinds of spline curve 

were employed, consisting of knots 0, 4, 

and 7. The fitted models present the 

seasonal pattern curve in the nine sub-

regions, with thick lines for 4-knot, thin 

lines for 7-knot, and dotted lines for 0-

knot. Acceleration is shown from 4-knot, 

while the 7-year cycle is shown from 7-

knot. In some of the sub-regions there are 

7-year cycles. From the observations 

during the 19 years period, it can be seen 

that the LST of New Britain increased 

around by 0.12 oC - 0.56 oC, with the 

lowest CI value of 0.264 and the highest 

of 0.437. The CI (confidence interval) 

value was significant because the lower 

and upper values did not exceed 1.
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Figure 3-3: Season-adjusted time series of LST-Day in the nine sub-regions of New Britain    

Island for the period 2000-2019 

 

In addition, Figure 3-3 shows a few 

outliers in the LST data, depicted by pink 

dots. These indicate that the LST 

observations took place when the sky was 

clear. In addition, sometimes the 

observations were not optimal because of 

heavy clouds in the rainy season. 

Autoregression was used to handle 

autocorrelation with a model of the p 

order. Autoregression was conducted in 

each sub-region in order 2, with 

observations for 19 years, so it can be 

called AR(2). 

In the cubic spline function, it is 

given that the end of any year is followed 

by the beginning of the next year 

(Suwanwong & Kongchouy, 2016). 

Seasonal curves are the result of the 

function of the cubic spline, which 

produces temperature patterns and 

trends. The cubic spline function is 

excellent for observing the adjusted r-

squared values for the assumption that 

the optimal knots and appropriate model 

(Wongsai et al., 2017). In this study, there 

were eight knots on different days. The 

change in LST occurred on the island of 

New Britain. The observations used a 

multivariate regression test with a cubic 

spline of 95% significance, assuming that 

in great measure of the sub-region in New 

Britain showed a significant increase in 

LST. 

The Z value result indicates that 

pixels with high or low LST values are 

spatially clustered, even though they were 

measured to be statistically significant. In 

the case of a statistically significant 

positive Z value, as well as a greater Z 

value, they were included in the higher 

value cluster (hot spot), whereas the lower 

value cluster (cold spot) included those 

with a statistically significant negative Z 

value and a smaller Z value (Mavrakou, 

Polydoros, Cartalis, & Santamouris, 

2018). In this study, the result of the Z 

value was positive, with a value of 7.97, 

meaning it is high.  

The increase in LST on the island 

can be an indicator of climate change 

because it is part of frequent weather 

change (Ayuningtyas, 2015). LST changes 

because it is influenced by urbanisation 

land use and land cover change (such as 

forest degradation and deforestation) (Fu 

& Weng, 2016). The island of New Britain 

has a sizeable amount of rainforest, but it 

suffered the highest extent of 
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deforestation and logging from 2002 to 

2014 (Bryan & Shearman, 2015).  The 

location of the greatest deforestation is 

near sub-regions 5 and 7. 

The greater levels of human 

activities which do not pay due care to the 

environment can cause global warming, 

especially because of the reduced areas of 

rainforest or green open space. Warming 

could occur on the island of New Britain 

because of increased LST. In addition, the 

increase in LST can be used as an 

indicator of heat islands, which are one of 

the causes of LST becoming warmer. Heat 

islands can impact on heatwaves, which 

affect the quality of life and the 

environment.  LST is one of the climatic 

variables that can be an indicator of 

drought disasters; droughts can therefore 

be predicted from geographical conditions 

(Karnieli et al., 2010).  

In the study of Korada, Sekac, Jana, 

& Pal (2018) related to drought in Papua 

New Guinea with reference to the LST and 

Normalized Difference Vegetation Index 

(NDVI), it was found that there was a risk 

zone, especially in the Western Highlands 

province. Based on that study, LST 

indicates drought from radiation levels. 

When radiation is high, there is little 

water content at the surface of the soil. 

Drought occurs because the temperature 

is too high, causing the water in the soil 

to evaporate. Drought can cause hunger 

and death because water is a source of 

life. If drought occurs, the community 

may not have sufficient food supplies 

because agriculture is experiencing crop 

failure.  

 

4 CONCLUSION 

The island of New Britain has many 

tropical rainforests, but it is also 

experiencing much logging and 

deforestation. This problem has an 

impact on climate change, which can 

result in natural disasters such as 

droughts. New Britain Island consists of 

one region with nine sub-regions, which 

comprised the observation area for the 

LST study.  In eight of the nine sub-

regions, LST had increased. The greatest 

change related to sub-region 9, with an 

average rise of 0.56o℃, while sub-region 

2 experienced LST stability. 

The method used for the temporal 

analysis was autoregression (AR). The 19 

year time series showed that the increase 

in temperature was around 0.12℃ - 

0.56℃. Therefore, the results clearly 

indicate that the Island of New Britain is 

becoming warmer. For the spatial 

analysis, the study used the multivariate 

regression method based on the spline 

curve. The cubic spline was used to 

observe seasonal patterns in LST-day. 

Spatial and temporal analyses are very 

suitable for observing patterns in Land 

Surface Temperature. 
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