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Abstract. The detection and monitoring of the dynamics of urban micro-climates needs to be performed 

effectively, efficiently, consistently and sustainably in an effort to improve urban resilience to such 

phenomena. Thermal remote sensing posesses surface thermal energy detection capabilities which can 

be converted into surface temperatures and utilised to analyse the urban micro-climate phenomenon 

over large areas, short periods of time, and at low cost. This paper studies the surface urban cool island 

(SUCI) effect, the reverse phenomenon of the surface urban heat island (SUHI) effect, in an effort to 

provide cities with resistance to the urban microclimate phenomenon. The study also aims to detect 

urban micro-climate phenomena, and to calculate the intensity and spatial distribution of SUCI. The 

methods used include quantitative-descriptive analysis of remote sensing data, including LST 

extraction, spectral transformation, multispectral classification for land cover mapping, and statistical 

analysis. The results show that the urban micro-climate phenomenon in the form of SUHI in the middle 

of the city of Salatiga is due to the high level of building density in the area experiencing the effect, which 

mostly has a normal surface temperature based on the calculation of the threshold, while the relative 

SUCI occurs at the edge of the city. SUCI intensity in Salatiga ranges between -6.71°C and 0°C and is 

associated with vegetation.  
 
Keywords: Thermal Remote Sensing, Land Surface Temperature, Urban Microclimate, Surface Urban Cool 

Island 

 

1 INTRODUCTION 

The urbanization phenomenon has 

a significant impact on increases in 

surface temperature, meaning cities are 

vulnerable to changes in microclimate 

characteristics, which can lead to 

environmental problems (Wang et al., 

2016; Huang & Wang, 2019). A 

microclimate is a climatic condition in the 

local atmospheric zone which exhibits 

differences to the surrounding 

environment (Chen  et al., 1999; 

Ismangil et al., 2016). The change in 

microclimate is one of the types of 

pressure faced by cities, as it is related to 

the urban heat island (UHI), which is a 

phenomenon in which the temperature of 

the urban area is higher than the 

surrounding rural areas (Xian & Crane, 

2006; Mostofi & Hasanlou, 2017). UHI 

also has other negative impacts, such as 

changing air quality, effect on human 

health, and energy exchange (Lai & 

Cheng, 2009; Road et al., 2010; Stone et 

al., 2010; Tan et al., 2010; Skelhorn et al., 

2016; Ng & Ren, 2017; Fawzi, 2017). It 

eventually also disrupts the comfort of life 

in urban areas. 

In recent years, the study of micro-

climate change has been much more 

focused on the UHI phenomenon. 

However, few studies have considered the 

urban cool island (UCI) effect, which is the 

opposite of UHI and is a phenomenon 
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whereby the  air temperature in the 

countryside is higher than in the urban 

area (Yang et al., 2016). Several previous 

studies have suggested that UCI is 

effective for the microclimate mitigation, 

reducing rising air temperatures, and 

improving the comfort of urban areas 

(Cao et al., 2010; Kong, et al., 2014). 

Therefore, UCI can also be used to plan 

the provision of green open spaces and to 

improve the effectiveness of monitoring 

the dynamics of climate changes in an 

effort to improve cities’ resilience to 

microclimate change.  

Few studies on UCI have been 

conducted in Indonesia, especially in 

relation to the city of Salatiga. This was 

one of the cities in Central Java province 

which in 2020 was a pilot nationally and 

internationally for the integration of the 

development of green open spaces. The 

city managed to exceed the national target 

for the provision of green open space by 

24%, of which 16.11% was combined 

green open space, with the remainder 

being sustainable development 

agricultural land. This condition makes 

Salatiga an interesting location for 

research on UCI, considering RTH has an 

influence on the surface temperature of 

cities.  

Study of UCI is differentiated into 

two types: UCI surface and UCI water. 

The surface intensity of UCI, commonly 

abbreviated as SUCI, can be gauged 

directly from the land surface 

temperature (LST) value of data extraction 

recorded by infrared thermal sensor 

satellite remote sensing. LST is an energy 

beam of ground level objects successfully 

recorded by sensors (Li et al., 2013; 

Alhawiti, 2016). On the other hand, UCI 

water requires different data to LST, 

namely the air temperature, usually 

obtained from measurements in the field 

or from station climatology. 
Remote sensing applications for 

SUCI/UCI research are almost the same 

as those for SUHI/UHI research, mostly 

employing cover/land use as one of its 

variants. For example, Reisi et al. (2019) 

examined the effect of LULC 

(landuse/landcover) changes on LST in 

Isfahan City, Iran, from 1985 to 2017, 

using Landsat 5 and 7 ETM imagery. 

However, the results in their study did not 

further assess SUCI/UCI intensity. The 

study of such intensity has been more 

detailed in previous years. For instance, 

Li and Dai (2011) measured UCI intensity 

based on the boundary line changes of 

several cities in Hunan, China in 1989, 

2001 and 2006. Their results showed that 

the difference in the city boundary line 

affected UCI intensity up to a maximum 

of > 2 ºC. In addition, the negative 

correlation between NDVI and UCI 

intensity was also established by Li and 

Dai (2011), even though the coefficient of 

the correlation decreased from 0.845 to 

0.606. The results of their study is shown 

only in table form and are not visualized 

spatially in the form of maps, so the 

spatial distribution is unknown. 

The association between UCI and 

green open space was examined by Chen 

et al. (2014) in Beijing, China, whose 

research results showed the influence of 

urban RTH spatial patterns on UCI, and 

that these were stronger during winter. 

The pattern size and combination of RTH 

vegetation also influenced UCI. More 

complex research was conducted by 

Rasul et al. (2015), who examined the 

influence of LST on SUCI in the dry 

season using several spectral 

transformations, which included wetness, 

brightness, the greenness index, NDBI 

and NDVI. Their results show that the 

brightness index was a very influential 

factor in the LST, while the wetness index 

was the second factor. In addition, the 

LST with NDBI had a strong positive 

correlation, whereas NDVI-based LST had 

a negative correlation. 

The purpose of this SUCI research 

in the city of Salatiga using the remote 

sensing approach is (1) to, establish the 
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spatial distribution of SUCI intensity; and 

(2) to calculate this intensity. 

 

2 MATERIALS AND METHODOLOGY 

2.1 Location and Data  

The research site was located in 

Salatiga City, Central Java province, 

Indonesia, with coordinates of between 

07º17′ – 07º 17' 23 " S and 110º 27′57" – 

110º32′05" E. The city is completely 

bordered by Semarang Regency, Central 

Java province. It has a total area of 56.78 

km2, of which 24% is green open space 

(see Figure 2-1). 
 

 
Figure 2-1: Location of Study Area 

 

The imagery used in the research 

was obtained from Landsat 8 OLI/TIRS 

with a resolution of 30 m (pixel resampling 

from Earth Engine Dataset) with a 

recording date of 16 November 2019, and 

Sentinel 2A MSI with a resolution of 10 m, 

with a recording date of 19 November 

2019. The selection of the dates was 

based on the availability of data with 

minimum cloud cover to produce 

objective analysis. The Landsat 8 OLI 

Thermal Infrared Sensor (TIRS) was 

employed for the Land Surface 

Temperature (LST) estimation used for 

Surface Urban Cool Island (SUCI) 

analysis, and data with 1-7 multispectral 

bands used for the creation of the 

vegetation index transformation. Sentinel 

2A MSI images were used for the 

classification of land cover in the study 

area. 

Landsat 8 and Sentinel 2A were not 

used for comparison analysis. Landsat 8 

focused on thermal imagery analysis 

covering LST to SUCI, while land cover 

from Sentinel 2A was only used to observe 

SUCI spatial distribution of certain land 

cover classes. Sentinel 2A was selected for 

land cover classification with the aim of 

improving its accuracy. 

 

2.2 Radiometric and Geometric 

Correction 

Landsat 8 OLI/TIRS Imagery and 

Sentinel 2A MSI were atmospherically 

corrected to surface reflectance (bottom-

of-atmosphere). The atmospheric 

corrected imagery from Landsat 8 

OLI/TIRS was used for spectral 

transformation purposes, while  Sentinel 

2A MSI was used for the multispectral 

classification of land cover. The image 

products used were also geometrically 

corrected, so it was only necessary to 

make an overview check to ensure the 

geometric position of both the images was 

precise and relevant to be processed 

based on the 1:25,000 scale  Rupabumi 

Indonesia map of Salatiga City. The 

imagery used is available on the Google 

Earth Engine (GEE) platform 

 

2.3 Land Surface Temperature 

Extraction  

Land Surface Temperature (LST) 

extraction was performed on the Google 

Earth Engine using the Single Channel 

Algorithm (SCA) method, based on its 

ease of accessibility, efficiency and 

effectiveness in data acquisition. 
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Figure 2-2: Image Metadata Collection in Google Earth Engine 

Source: https://developers.google.com/earth-engine/datasets 

 

 The extraction was performed on 

the Landsat 8 TIRS imagery using 

thermal channel Band 10. According to 

Loyd (2017), cited in Fawzi (2017), band 

10 has a thermal accuracy of ~ ± 1 Kelvin 

for simple LST estimation at the urban 

scale or greater. The thermal imagery 

acquired from GEE was already a 

brightness temperature (Trad) as a result 

of the calibration of at-sensor spectral 

radiance (Lλ). 

The brightness temperature of the 

extraction used Kelvin units to facilitate 

the analysis; the conversion of the units 

to Celsius (°c) was made with the 

following formula: 

 

T𝑐𝑒𝑙𝑐𝑖𝑢𝑠 = T − 273.15 (2-1) 

 

where: 

Tcelcius = temperature in Celsius (°C) 

T = temperature in Kelvin (K) 

 

The extraction of surface 

temperature needs to be made through 

the emissivity correction process to obtain 

accurate values (Fawzi, 2017). One 

method for the correction of emissivity is 

use of the vegetation index NDVI (Salih et 

al., 2018; Bahi et al., 2016; Fawzi, 2017). 

The formula used to compose the NDVI in 

Landsat 8 OLI is as follows: 

 

𝑁𝐷𝑉𝐼 =  
(𝐵5 − 𝐵4)

(𝐵5 + 𝐵4)
 (2-2) 

 

where: 

B5 = NIR Band 

B4 = Red Band 

An emissivity correction method 

using NDVI requires the values of 

vegetation and soil emisivity. Referring to 

Fawzi (2017), the vegetation values in the 

measurement results were in the range of 

ɛv = 0.980 – 0.990, while for soil 

emissivity in the range of Ɛs = 0.950 – 

0.970. The calculation of the surface 

emissivity value to be used in the LST 

estimation refers to the following 

formulas (Salih et al., 2018; Li & Norford 

2016; Sobrino et al., 2008; Valor, 1996): 

 

ɛ =  ɛ𝑣 𝑃𝑣 + ɛ𝑠 (1 − 𝑃𝑣) + 𝑑ɛ (2-3) 

 

where: 

ɛ = land surface emissivity 

ɛv = emissivity of vegetation 

ɛs = emissivity of soil 

Pv = proportion of vegetation 

dɛ = surface roughness 

 

𝑃𝑣 =  (
𝑁𝐷𝑉𝐼 − 𝑁𝐷𝑉𝐼𝑆

𝑁𝐷𝑉𝐼𝑉 − 𝑁𝐷𝑉𝐼𝑆

)
2

 
(2-4) 

 

where: 

Pv =  proportion of vegetation 

NDVIs =  spectral value of soil in NDVI 

NDVIv = spectral value of vegetation in 

NDVI 

The last phase of the LST extraction 

process involves inclusion of all the 

necessary variables in the following 

equation (Salih et al., 2018): 

 

𝐿𝑆𝑇 =  
𝑇𝑟𝑎𝑑

(1 + (
𝑇𝑟𝑎𝑑

𝑝
) ln 𝜀)

 (2-5) 

 

 

https://developers.google.com/earth-engine/datasets
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where: 

LST = land surface temperature (°C) 

Trad = brightness temperature (°C) 

P = constant of 1.488 x 10-2  

ɛ  = surface emissivity 

 

2.4 Detection of Area Indicated by 

Surface Urban Heat and Cool 

Island (SUHI/SUCI) 

Initial detection and identification of 

surface urban heat and cool island 

(SUHI/SUCI) can be made visually by 

observing the LST distribution patterns, 

but for the purpose of mitigation and 

planning of areas related to urban 

microclimate phenomena it is necessary 

that  heat and cool islands are 

accommodated in quantitative form. Lima 

and Lopes (2017) used the following 

formula for early detection of areas 

indicated as SUHI/SUCI: 

 

∆T𝜇−𝑟 = T𝜇 − T𝑟  (2-6) 

 

where: 

 

∆Tμ-r  = LST difference in the area    

indicated by SUHI (°C) 

Tμ = LST difference in urban area (°C) 

Tr =  LST difference in nonurban area 

(°C) 

 

∆T𝑟−𝜇 = T𝑟 − T𝜇  (2-7) 

 

where: 

∆Tr-μ  = LST difference in the area 

indicated by SUCI (°C) 

Tμ = LST difference in urban area (°C) 

Tr =  LST difference in non-urban area 

(°C) 

Equation (6) was used to identify the 

surface temperature of the area indicated 

by the SUHI phenomenon, while equation 

(7) was used to identify the surface 

temperature in the area indicated by 

SUCI. These equations are  simple one to 

ascertain the surface temperature 

difference in the early detection of the 

SUHI/SUCI phenomena ; it needs a 

formula to find the SUHI/SUCI intensity 

to obtain the surface temperature 

threshold as the basis for the analysis.  

Research conducted by Ma et al. 

(2010) used a more specific formula 

related to determining the surface 

temperature threshold in the SUHI/SUCI 

phenomena, as follows: 

 

T𝑠𝑢ℎ𝑖 > μ𝑜𝑟𝑖 + 0,5α𝑜𝑟𝑖  (2-8) 

 

where: 

Tsuhi = LST in the area indicated by SUHI 

(°C) 

μori = average of LST in the original 

thermal image (°C) 

αori = standard deviation in the original 

thermal image 

Equation (8) was used to obtain a 

surface temperature threshold on an 

indicated area of SUHI.  

 

0 < T𝑛𝑜𝑟𝑚 ≤ μ𝑜𝑟𝑖 + 0,5α𝑜𝑟𝑖  (2-9) 

 

where: 

Tnorm = LST in normal condition (°C) 

μ ori = average of LST in the original 

thermal image (°C 

α ori = standard deviation in the original 

thermal image 

Equation (9) was used to obtain the 

surface temperature threshold in regions 

not indicated as SUHI. The area that is 

included in this surface temperature 

range has not been identified as SUCI 

because it still has the potential to 

become an area with normal surface 

temperature, or a SUCI indication area. 

The determination of the SUCI 

surface temperature threshold requires 

statistical surface temperatures in areas 

with normal conditions to determine the 

distribution of surface temperature 

values and central tendenciesEquations 

that can be reduced to acquire threshold 

values in the SUCI-indicated areas are as 

follows: 
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T𝑆𝑢𝑐𝑖 < μ𝑛𝑜𝑟𝑚 + 0,5α𝑛𝑜𝑟𝑚  (2-10) 

 

where: 

Tsuci = LST in the area indicated by SUCI 

(°C) 

μnorm = average of LST in the original 

thermal image with normal 

condition (°C) 

αnorm = standard deviation in thermal 

image with normal condition  

 

Table 2-1:Average, StDev and Threshold 

Values of SUHI, Normal and 

SUCI 

  Average StDev 

Toriginal (°C) 30.09 4.68 

Tnormal (°C) 27.21 3.02 

SUHI Threshold (°C) T > 32.43 

Normal Threshold (°C) 28.72 ≤ T ≤ 32.43 

SUCI Threshold (°C) T < 28.72 

 

2.5 Measuring Surface Urban Cool 

Island (SUCI) Intensity 

The value of the surface 

temperature threshold was obtained as 

the basis for the spatial measurement of 

SUCI intensity. This intensity was 

obtained by using a modified equation 

from Fawzi's (2017) study, as follows: 

 

𝑆𝑈𝐶𝐼𝑖𝑛 = T𝑠𝑢𝑐𝑖 − (μ𝑛𝑜𝑟𝑚 + 0,5α𝑛𝑜𝑟𝑚) (2-11) 

 

where: 

SUCIin = SUCI Intensity (°C) 

Tsuci = LST in the area indicated by 

SUCI (°C) 

μnorm = average of LST in the original 

thermal image in normal 

conditions (°C) 

αnorm = standard deviation in the 

original thermal image in 

normal conditions 

 

2.6 Land Cover Classification and 

Accuracy Assessment 

Land cover classification was 

performed using the supervised 

classification method with the maximum 

likelihood algorithm. The classification 

was divided into three class: bare land, 

built up areas and vegetation. This 

algorithm was selected based on its good 

performance in land cover classification 

based on probability calculation or the 

maximum probability of each sample 

group (Danoedoro, 2012).  

The accuracy assessment of the 

land cover map was made using a 

confusion matrix and kappa coefficient. 

Sampling for the assessment was made 

using the cross-validation method, which 

was performed by different people so the 

results were more objective. This was also 

because of the small number of land cover 

classes with many different 

characteristics. The sampling method 

used in the accuracy assessment was 

stratified random sampling, with a total 

sample of 22,686 pixels divided into 

15,886 model samples and 6,800 

accuracy samples. 

 

3 RESULTS AND DISCUSSION 

3.1 Spatial Distribution of LST and 

Land Cover in Salatiga City 

The results of the processing of the 

Landsat 8 TIRS thermal imagery indicates 

that the surface temperature is high 

enough in the central area of Salatiga that 

for it to be visually identified against the 

LST distribution pattern. The distribution 

of LST is quite high between 30°C - 37°C, 

concentrated in the middle of the city, 

which is influenced by the densely built-

up area. This increases the emissivity of 

the surface, which is recorded by the 

thermal infrared sensor as a higher 

surface temperature than that in the 

surrounding area. The built-up area 

spatial pattern also affects the surface 

temperature distribution, as shown in the 

image in this figure. 
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Figure 3-1: Land cover (a) and LST (b) on map of Salatiga City 

 

The patterns of the LST values are 

quite high in the central part of the city, 

where the land cover is dominated by 

built-up areas, while the edge of the city 

tends to have a lower surface 

temperature, with a dominance of 

vegetation. This shows that there is a 

difference in the thermal energy emitted 

from the built-up area and the area with 

vegetation, as seen in Figure 3-1. 

 

3.2  Detection of SUHI Area, Normal 

Condition and SUCI 

The detection process of the area 

indicated by SUHI, the normal condition 

and SUCI is based on the equations used 

and the threshold value of the surface 

temperature. The results of the 

processing indicate that the potential 

occurrence of SUHI is in areas with a 

surface temperature of >32.43°C, which 

are distributed in the center of the city, 

while the surface temperatures in normal 

conditions are in the range of 28.72°C - 

32.43°C, and are spread around the 

region with potential SUHI. 

Indications of SUCI were detected 

on the edge of the city, with a surface 

temperature of <28.72°C. These 

indications have a pattern that tends to 

group on the city edge, with land cover in 

the form of vegetation and some bare 

land. SUCI intensity measurements were 

taken to obtain specific information 

related to SUCI. 

Based on the measurement results, 

SUCI intensity was divided into five 

classes : very high (-6.71°C – -5.37°C); 

high (-5.36°C – -4.03°C) ; medium (-

4.02°C – -2.68°C); low (-2.67°C – -1.34°C; 

and very low (-1.33°C – 0°C). The intensity 

shows the SUCI effect that occurs in 

related areas. It is very high, signifying 

that the area has a greater SUCI effect 

than the surrounding area, with a 

difference in the value of the surface 

temperature of between -6.71°C to -

5.37°C. The dominance of land cover in 

areas of high intensity value in the form 

of vegetation with varying levels of 

greenish.  

(a) (b) 
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Figure 3-2: SUCI Intensity Map of Salatiga City 

 
Table 3-1: Accuracy Assessment of Land Cover Map 

 

Ground Truth (Pixels) 
 

Vegetation Built up Area Bare land Total row 
User 

Accuracy (%) 

T
e
n

ta
ti

v
e
 M

a
p
 

Vegetation 1932 100 256 2288 84.44 

Built up Area 224 1957 34 2215 88.35 

Bare land 140 117 2040 2297 88.81 

Total column 2296 2174 2330 6800 

 Producer Accuracy (%) 84.15 90.02 87.55  

 Overall Accuracy (%) 87.19  

 

3.3  Accuracy Assessment of the Land 

Cover Map 

The land cover map accuracy test 

was conducted using a confusion matrix 

and kappa coefficient. The accuracy 

assessment results show good accuracy 

with the kappa coefficient, in the very 

good agreement category. The accuracy 

assessment results can be seen in Table 

3-1. 

 

3.4  Accuracy Assessment of Land 

Surface Temperature (LST) 

Some researchers suggest that the 

accuracy test and validation of that 

surface temperature should be conducted 

a maximum of 3-4 hours after recording 

(for addition, Sabins, 2007, cited in 

Fawzi, 2017), even though the surface 

temperature is very dynamic, even in 

seconds. Ideally, an accuracy test should 

be made simultaneously when the 

satellite is recording the area, but this is 

very difficult to achieve.  

There is also the option to make 

comparisons of two thermal infrared 

sensors that record the same area, but 

due to data source limitations, this is also 

difficult to do. Studies on surface 

temperature accuracy tests need to be 

reviewed in relation to the extraction 

process. Accuracy testing of remote 

sensing imagery is made only on the 

results of both visual and digital 

interpretation; for example, on the 

interpretation of land cover/land use. 

Land cover/land use is a hybrid variable 

that needs to be tested, while the 

biophysical variables that make up the 

hybrid variable are sets of pixel values 

that do not need to be tested (Danoedoro, 

2012).
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Table 3-2: Calibration constant of Landsat 8 TIRS Band 10 

Temperature (K) 

TIRS Band10 Change in Response (K) 

Feb 11, 2013 – Mar 1, 2015 Mar 2, 2015 - Present 

240 (extrapolated) -0.11 2.73 

273 0.08 1.05 

285 0.14 0.60 

300 0.20 0.12 

320 (extrapolated) 0.27 -0.42 

Source: https://www.usgs.gov/core-science-systems/nli/landsat/landsat-8-oli-and-tirs-calibration-
notices 

 

Related to this issue, land surface 

temperature is a biophysical variable 

derived from inversions in physics 

equations, so there is no need to test its 

accuracy as long as the equations are 

used correctly according to established 

procedure. Another example of a 

biophysical variable is the pixel value in 

the images of the NDVI vegetation index 

transformation results. This value does 

not need to be tested because it is a 

biophysical variable derived from an 

equation, and a variable used as 

interpretation material to compose the 

hybrid variable. When accuracy tests are 

made on land surface temperature (LST), 

these are performed to test the thermal 

infrared sensor used in terms of its 

accuracy in relation to the actual 

temperature in the field, and not to test 

the land surface temperature (LST) itself 

(Danoedoro, 2012). 

Based on these issues, the United 

States Geological Survey has routinely 

calibrated the TIRS sensors attached to 

Landsat 8, with the results shown in 

Table 3-2. 

Based on Table 3-2, the accuracy of 

the TIRS sensor in Landsat 8 Band 10 is 

an average of 0.466 K. This shows that 

the analysis using land surface 

temperature data derived using Landsat 8 

TIRS Band 10 has an estimated value of 

0.466 K warmer than the original 

condition.  

 

4 CONCLUSION 

The phenomenon of SUHI in 

Salatiga was detected in the centre of the 

city, which was surrounded by areas with 

normal surface temperature based on the 

threshold value, while SUCI was 

distributed on the edge of the city, with an 

intensity -6.71°C to 0°C, and was 

associated with vegetation.  

 

ACKNOWLEDGEMENTS 

The authors would like to thank the 

United States Geological Survey for 

providing free-access data. We also would 

like to express our gratitude to the 

reviewer and editorial team. 

 
AUTHOR CONTRIBUTIONS 

Detection and Analysis of Surface 

Urban Cool Island Using Thermal Infrared 

Imagery of Salatiga City, Indonesia. Lead 

Author: Bayu Elwantyo Bagus 

Dewantoro, Co-Author: Panji Mahyatar 

and Wafiq Nur Hayani. Author 

contributions are as follows: 

1. Bayu Elwantyo Bagus Dewantoro: 

Thermal image processing, map 

layouting, and results analysis 

2. Panji Mahyatar: Provision and 

processing of optical imagery 

3. Wafiq Nur Hayani: Provision of 

introductions and prepare draft 

manuscripts 

 

 

 

https://www.usgs.gov/core-science-systems/nli/landsat/landsat-8-oli-and-tirs-calibration-notices
https://www.usgs.gov/core-science-systems/nli/landsat/landsat-8-oli-and-tirs-calibration-notices


Bayu Elwantyo Bagus Dewantoro et al.  

124  International Journal of Remote Sensing and Earth Sciences Vol. 17 No. 2 December 2020 

REFERENCES 

Adachi, S.A., Kimura, F., Kusaka, H., Inoue, T., 

& Ueda, H. (2012), Comparison of the 

impact of global climate changes and 

urbanization on summertime future 

climate in the Tokyo metropolitan area. 

American Meteorological Society, 7, 1441-

1454, https://doi.org/10.1175/JAMC-D-

11-0137.1. 

Alhawiti, R. H., & Mitsova, D. (2016). Using 

Landsat-8 Data to Explore The Correlation 

Between Urban Heat Island and Urban 

Land Uses. IJRET: International Journal of 

Research in Engineering and Technology, 

5(3), 457-466. 

Bahi, H., Hassan, R., Ahmed, B., Ute, F., & 

Dieter, S. (2016). Effects of Urbanization 

and Seasonal Cycle on the Surface Urban 

Heat Island Patterns in the Coastal 

Growing Cities: A Case Study of 

Casablanca, Morocco. Remote Sensing, 

8(829), 1-26. doi:10.3390/rs8100829. 

Cao, X., Onishi, A., Chen, J., & Imura, H. (2010). 

Quantifying the Cool Island Intensity of 

Urban Parks Using ASTER and IKONOS 

Data. Landscape and Urban Planning, 

96(4), 224–231. 

Chen, A., Yao, X. A., Sun, R., & Chen, L. (2014). 

Effect of Urban Green Patterns on Surface 

Urban Cool Islands and Its Seasonal 

Variations. Urban Forestry & Urban 

Greening, 13(4), 646-654. 

https://doi.org/10.1016/j.ufug.2014.07.

006.  

Chen, J., Saunders, S.C., Crow T.R., Naiman, 

R.J., Brosofske, K.D., Mroz G.D., 

Brookshire, B.L., & Franklin, J.F. (1999). 

Microclimate in forest Ecosystem and 

Landscape Ecology: Variations in local 

climate can be used to monitor and 

compare the effects of different 

management regimes. BioScience, 49(4), 

288-297. 

Danoedoro, P. (2012). Pengantar penginderaan 

jauh digital [Introduction to digital remote 

sensing]. Yogyakarta: Andi.  

Fawzi, N. I. (2017). Mengukur urban heat island 

menggunakan penginderaan jauh, kasus 

di Kota Yogyakarta [Measuring urban heat 

island using remote sensing, a case in 

Yogyakarta City]. Majalah Ilmiah Globë, 

19(2), 195-206. 

Goggins, W.B., Chan, E.Y.Y., Ng, E., Ren, C., & 

Chen, L., (2012). Effect modification of the 

association between short-term 

meteorological factors and mortality by 

urban heat islands in Hong Kong. PLOS 

ONE, 7(6), 1 – 6. 

https://doi.org/10.1371/journal.pone.00

38551. 

Huang, X., & Wang, Y. (2019). Investigating The 

Effects of 3D Urban Morphology on The 

Surface Urban Heat Island Effect in Urban 

Functional Zones by Using High-

Resolution Remote Sensing Data: A Case 

Study of Wuhan, Central China. ISPRS 

Journal of Photogrammetry and Remote 

Sensing, 152, 119-131. 

https://doi.org/10.1016/j.isprsjprs.2019

.04.010.  

Ismangil, D., Wiegant, D., Hagos, E., 

Steenbergen, F.V., Kool, M., Sambalino, 

F., Castelli, G., Bresci, E., & Hagos F. 

(2016). Managing the Microclimate. Spate 

Irrigation Network Foundation. 

Kong, F., Yin, H., Wang, C., Cavan, G., & James, 

P. (2014). A Satellite Image-Based 

Analysis of Factors Contributing to The 

Green-Space Cool Island Intensity on A 

City Scale. Urban Forestry & Urban 

Greening, 13(4), 846-853. 

http://dx.doi.org/10.1016/j.ufug.2014.0

9.009. 

Lai, L.W., & Cheng, W.L. (2009). Air Quality 

Influenced by Urban Heat Island Coupled 

with Synoptic Weather Patterns. Science 

of the Total Environment, 407(8), 2724–

2733.  

Li, S., Mo, H., & Dai, Y. (2011). Spatio-Temporal 

Pattern of Urban Cool Island Intensity and 

Its Eco-environmental Response in 

Chang-Zhu-Tan Urban Agglomeration. 

Communications in Information Science 

and Management Engineering, 1(9), 1-6. 

Li, X.X., & Norford, L.K.. (2016). Evaluation of 

cool roof and vegetations in mitigating 

https://doi.org/10.1175/JAMC-D-11-0137.1
https://doi.org/10.1175/JAMC-D-11-0137.1
https://doi.org/10.1371/journal.pone.0038551
https://doi.org/10.1371/journal.pone.0038551


Detection and Analysis Of… 

International Journal of Remote Sensing and Earth Sciences Vol. 17 No. 2 December 2020 125 

urban heat island in a tropical city, 

Singapore. Urban Climate, 16, 59–74. 

Li, Z-L, Tang, B-H, Wu, H., Ren, H., Yan, G., 

Wan, Z., Trigo, I.F., & Sobrino, J.A. (2013). 

Satellite-Derived Land Surface 

Temperature: Current Status and 

Perspectives. Remote Sensing of the 

Environment, 131, 14-37. 

http://dx.doi.org/10.1016/j.rse.2012.12.

008. 

Lima, A. E., & Lopes, A. (2017). The urban heat 

island effect and the role of vegetation to 

address the negative impact of local 

climate changes in a small Brazilian City. 

Atmosphere Multidisciplinary Digital 

Publishing Institute 8(2), 1-14  

Loyd, C.. (2017). Landsat 8 bands. Landsat 

Science. Available at: 

https://landsat.gsfc.nasa.gov/landsat-

8/landsat-8-bands/. Accessed 19 June 

2020. 

Ma, Y., Kuang, Y., & Huang, N. (2010). Coupling 

urbanization analyses for studying urban 

thermal environment and its interplay 

with biophysical parameters based on 

tm/etm+ imagery. International Journal of 

Applied Earth Observation and 

Geoinformation 12(2): 110–118. 

Mostofi, N., & Hasanlou, M. (2017). Feature 

Selection of Various Land Cover Indices 

for Monitoring Surface Heat Island in 

Tehran City Using Landsat 8 Imagery. 

Journal of Environmental Engineering and 

Landscape, 25(3), 1-10. 

http://dx.doi.org/10.3846/16486897.20

16.1223084. 

Ng, E., & Ren, C. (2017). China’s Adaptation to 

Climate & Urban Climatic Changes: A 

Critical Review. Urban Climate, 23, 352 – 

372.  

https://doi.org/10.1016/j.uclim.2017.07

.006.  

Rasul, A., Balzter, H., & Smith, C. (2015). Spatial 

Variation of The Daytime Surface Urban 

Cool Island During The Dry Season in 

Erbil, Iraqi Kurdistan, from Landsat 8. 

Urban Climate, 14(2), 176-186. 

http://dx.doi.org/10.1016/j.uclim.2015.

09.001. 

Reisi, M., Nadoushan, M. A., & Aye, L. (2019). 

Remote Sensing for Urban Heat and Cool 

Islands Evaluation in Semi-Arid Areas. 

Global Journal of Environmental Science 

and Management, 5(3), 319-330. doi: 

10.22034/gjesm.2019.03.05. 

Kershaw, T., Sanderson, M., Coley, D., Eames. 

M. (2010). Estimation of The Urban Heat 

Island for UK Climate Change Projections. 

Building Services Engineering Research 

and Technology, 31(3), 251–263.  

Sabins, F. F. (2007). Remote Sensing: Principles 

and Interpretation 3rd Edition. Illinois: 

Waveland Press.  

Salih, M. M., Jasim, O. Z., Hassoon, K. I., & 

Abdalkadhum, A. J. (2018). Land surface 

temperature retrieval from Landsat-8 

thermal infrared sensor data and 

validation with infrared thermometer 

camera. International Journal of 

Engineering and Technology, 7(4.2), 608 – 

612, doi: 10.14419/ijet. v7i4.20.27402. 

Skelhorn, C. P., Lindley, S. & Levermore, G. 

(2016). Urban Greening and the UHI: 

Seasonal Trade-Offs in Heating and 

Cooling Energy Consumption in 

Manchester, UK. Urban Climate, 23, 

available at: 

https://doi.org/10.1016/j.uclim.2017.02

.010. 

Stone, B., Hess, J.J., & Frumkin, H. (2010). 

Urban Form and Extreme Heat Events: 

Are Sprawling Cities More Vulnerable to 

Climate Change than Compact Cities? 

Environmental Health Perspectives, 

118(10), 1425–1428. 

Sobrino, J. A., Jimenez-Munoz, J. C., Soria, G., 

Romaguera, M., Guanter, L., Plaza, A., & 

Martinez, P. (2008). Land surface 

emissivity retrieval from different VNIR 

and TIR sensors. IEEE Transactions on 

Geoscience and Remote Sensing 64, 316 – 

327. 

Tan, J., Zheng, Y., Tang, X., Guo, C., Li, L., Song, 

G., Zhen, X., Yuan, D., Kalkstein, A.J., & 

Li, F. (2010). The Urban Heat Island and 

https://landsat.gsfc.nasa.gov/landsat-8/landsat-8-bands/
https://landsat.gsfc.nasa.gov/landsat-8/landsat-8-bands/


Bayu Elwantyo Bagus Dewantoro et al.  

126  International Journal of Remote Sensing and Earth Sciences Vol. 17 No. 2 December 2020 

Its Impact on Heat Waves and Human 

Health in Shanghai. International Journal 

of Biometeorology, 54(1), 75–84. 

Tran, H., Uchihama, D., Ochi, S., & Yasuoka, Y., 

(2006), Assessment with satellite data of 

the urban heat island effects in Asian 

mega cities. International Journal of 

Applied Earth Observation and 

Geoinformation 8(1), 34-48. 

https://doi.org/10.1016/j.jag.2005.05.0

03. 

Valor, E., & Caselles, V. (1996). Mapping land 

surface emissivity from NDVI: Application 

to European, African, and South 

American areas. Remote Sensing of 

Environment 57(3), 167–184. 

Wang, Y., Chen, L., & Kubota, J. (2016). The 

Relationship Between Urbanization, 

Energy Use and Carbon Emissions: 

Evidence from A Panel of Association of 

Southeast Asian Nations (ASEAN) 

Countries. Journal of Cleaner Production, 

112, 1368–1374.  

Xian, G., & Crane, M. (2006). An Analysis of 

Urban Thermal Characteristics and 

Associated Land Cover in Tampa Bay and 

Las Vegas Using Landsat satellite Data. 

Remote Sensing of Environment 104(2), 

147–156. 

https://doi.org/10.1016/j.rse.2005.09.0

23 

Yang, X., Li, Y., Luo, Z., & Chan, P. W. (2016). 

The Urban Cool Island Phenomenon in A 

High-Rise High-Density and Its 

Mechanism. International Journal of 

Climatology, 37(2), 890–904. 

https://doi.org/10.1002/joc.4747.

 

https://doi.org/10.1016/j.jag.2005.05.003
https://doi.org/10.1016/j.jag.2005.05.003
https://doi.org/10.1016/j.rse.2005.09.023
https://doi.org/10.1016/j.rse.2005.09.023

