Erna Sri Adiningsih, Andy Indrajat, Noriandini D. Salyasari


Preliminary analysis on quality data of Aerosol Optical Thickness/Depth or AOT/AOD derived from NPP VIIRS EDR (Environmental Data Record) has been done in previous work. Qualitative analysis of the previous work revealed that AOT data of VIIRS had insufficient quality due to some factors such as sun glint and cloud cover. However the accuracy of AOT VIIRS data over western area of Indonesia has not been investigated. Therefore this paper describes further analysis on AOT VIIRS data quality and accuracy. Comparison with AOT derived from Aqua MODIS data was implemented since AOT of MODIS has verified well with AOT data from field observation. Examination on cloud masking intermediate product of VIIRS was done for its importance in AOT data processing and persistent cloud cover obstacle over Indonesia. We used VIIRS and MODIS data archieved by LAPAN ground station. Further analysis on sun glint and cloud masking images indicates that these two intermediate products predominantly affect the quality of AOT from VIIRS and MODIS over the study areas. Compared with AOT of MODIS, AOT of VIIRS seems to result more pixels consisting AOT information over the same area and date. The statistical results showed that AOT values of VIIRS highly correlated with AOT values of MODIS with R2 of 78%. The accuracy of AOT derived from VIIRS was adequate as indicated by RMSE of  0.0977 or less than 0.5 for the samples over Sumatra, Borneo, and Java islands. Visual comparison of AOT images indicates that VIIRS data could result more detailed AOT values than MODIS data. Therefore the AOT of VIIRS data could be recommended for further applications in western area of Indonesia.  


aerosol optical thickness; NPP VIIRS EDR; Aqua MODIS; sun glint; cloud masking

Full Text:



Adiningsih ES., Indrajat A., Salyasari ND., (2015), Analisis Parameter Penentu Kualitas Produk Data Aerosol Optical Depth untuk Wilayah Indonesia Bagian Barat dari Satelit NPP VIIRS. Proceeding of National Seminar on Remote Sensing, IPB ICC, Bogor.

Cesnulyte V., Lindfors AV., Pitkänen MRA., Lehtinen KEJ, Morcrette JJ, Arola A., (2014), Comparing ECMWF AOD with AERONET Observations at Visible and UV Wavelengths. Atmos. Chem. Phys. 14:593–608. doi:10.5194/acp-14-593-2014.

Chan PK., Zhao XP., Heidinger AK., (2013), Long-Term Aerosol Climate Data Record Derived from Operational AVHRR Satellite Observations. Dataset Papers in Geosciences 2013, Article ID 140791. Hindawi Publ.Corp. doi:10.7167/2013/ 140791.

Chylek P., Henderson B., Mishchenko M., (2003), Aerosol Radiative Forcing and the Accuracy of Satellite Aerosol Optical Depth Retrieval. J. Geophys. Research, 108(D24): AAC 4-1– 4-8. doi:10.1029/2003JD 004044.

Dubovik O., Holben BN., Eck TF, Smirnov A., Kaufman YJ, King MD, Tanré D., Slutsker I., (2001), Variability of Absorption and Optical Properties of Key Aerosol Types Observed in Worldwide Locations. J. Atmos. Sci. 59:590‐608.

Goddard Space Flight Center., (2013), Joint Polar Satellite System (JPSS) VIIRS Aerosol Optical Thickness AOT) and Particle Size Parameter Algorithm Theoretical Basis Document (ATBD). Goddard Space Flight Center, NASA, Greenbelt, Maryland. 100.

Graf HF., Yang J., Wagner TM., (2009), Aerosol Effects on Clouds and Precipitation During the 1997 Smoke Episode in Indonesia. Atmos. Chem. Phys. 9 (2): 743-756. doi: 10.5194/acp-9-743-2009.

Hsu N., Tsay S., King M., Herman J., (2004), Aerosol Properties Over Bright-Reflecting Source Regions, Geosci. Remote Sens., IEEE Trans. 42: 557–569. doi:10.1109/ TGRS.2004.824067.

Jackson JM., Liu H., Laszlo I., Kondragunta S., Remer LA, Huang J., Huang H., (2013), Suomi NPP VIIRS Aerosol Algorithms and Data Products. J. Geophys. R. Atmos. 118: 12673-12689. doi: 10.1002/2013JD 020449.

Levy R., Remer L., Mattoo S., Vermote E., Kaufman Y., (2007), Second-Generation Operational Algorithm: Retrieval of Aerosol Properties Over Land from Inversion of Moderate Resolution Imaging Spectro radiometer spectral reflectance, J. Geophys. Res. 112( D13). doi:10.1029/2006JD007811, 2007.

Podgorny IA., Li F., Ramanathan V., (2003), Large Aerosol Radiative Forcing due to the 1997 Indonesian Forest Fire. Geophys. Res., Letters, 30(1): 28-1 - 28-4.

Remer L., Kaufman Y., Tanr´e D., Mattoo S., Chu D., Martins J., Li R., Ichoku C., Levy R., Kleidman R., Eck T., Vermote E., Holben B., (2005), The MODIS Aerosol Algorithm, Products, and Validation, J. Atmos. Sci. 62: 947–973.

Retalis A., Hadjimitsis DG., Michaelides S., Tymvios F., Chrysonlakis N., Claytom CRI., Themistocleous K., (2010), Comparison of Aerosol Optical Thisckness with in Situ Visibility Data Over Cyprus. Nat.Hazards Earth Syst. Sci. 10: 421-428.

Ruiz-Arias JA., Dudhia J., Gueymard CA., Pozo-V´azquez D., (2013), Assessment of the Level-3 MODIS Daily Aerosol Optical Depth in the Context of Surface Solar Radiation and Numerical Weather Modeling. Atmos. Chem. Phys., 13: 675–692.

Tan F., Lim HS., Yoon TL., Holben B., (2014), Variations in Optical Properties of Aerosols on Monsoonal Seasonal Change and Estimation of Aerosol Optical Depth using Ground-Based Meteorological and Air Quality Data. Atmos. Chem. Phys. Discuss., 14: 19747-19789.

Von Hoyningen-Huene W., Freitag M., Burrows JB., (2003), Retrieveal Aerosol Optical Thickness Over Land Surfaces from top-of-Atmosphere Radiance. J. Geophysical Research. 108(D9): AAC 2-1 - 2-20, 4260. doi: 10.1029/2001JD002018


  • There are currently no refbacks.