. Kustiyo


Since January 2013, Landsat 8 data can be freely accessed from LAPAN, making it possible to use the all available Landsat 8 data to  produce the cloud-free Landsat 8 composite images. This study used Landsat 8 archive images in 2015,  Operational Land Imager (OLI) sensor in 30 meter resolution, geometric correction level of L1T. The eight data in L1T of 118-062, southern part of Central Kalimantanwere used to produce a cloud-free composite image. Radiometric correction using Top of Atmosphere (TOA) and Bidirectional Reflectance Distribution Function (BRDF) algorithm to produce reflectance images have been applied, and then the most cloud-free pixels were selected in composite result. Six composite methods base on greens, open area and haze indices were compared, and the best one was selected  using visual analysis. The analysis shows that the composite algorithm using Max (Max (NIR, SWIR1)/Green) produces the best image composite.


Landsat 8; composite; cloud-free

Full Text:



Büttner G., Feranec J., Jaffrain G., Mari L., Maucha G., Soukup T., (2004), The Corine Land Cover 2000 Project. EARSeL eProceedings 3(3): 331–346.

Chander G., Huang C., Yang L., Homer C., Larson C., (2009), Developing consistent Landsat data sets for large area applications: The MRLC 2001 protocol. IEEE Geoscience and Remote Sensing Letters 6(4): 777–781.

Chen C., Chen Z., Li M., Liu Y., Cheng L., Ren Y., (2014), Parallel relative radiometric normalization for remote sensing image mosaics. Computers and Geosciences 73:28–36.

Cihlar J., Manak D. (1994), Evaluation of Compositing Algorithms for AVHRR Data Over Land. IEEE Transactions on Geoscience and Remote Sensing 32(2): 427–437. doi: 10.1109/36.295057.

Gong P., (2013), Finer resolution observation and monitoring of global land cover: first mapping results with Landsat TM and ETM+ data. International Journal of Remote Sensing, 34(7): 2607–2654.

Hansen MC, Roy DP, Lindquist E., Adusei B., Justice CO, Altstatt A., (2008), A method for integrating MODIS and Landsat data for systematic monitoring of forest cover and change and preliminary results for Central Africa. Remote Sensing of Environment 112: 2495–2513.

Ju J., Roy DP, (2008), The availability of cloud-free Landsat ETM+ data over the conterminous United States and globally. Remote Sensing of Environment, 112(3): 1196–1211. doi: 10.1016/j.rse.2007.08. 011.

Kustiyo, Roswintiarti O., Tjahyaningsih A., Dewanti R., Furby S., Wallace J., (2015), Annual forest monitoring as part of the Indonesia’s National Carbon Accounting System. International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences - ISPRS Archives, 40(7W3): 441–448.

Masek JG, Vermote EF, Saleous NE, Wolfe R., Hall FG, Huemmrich KF, Gao F., Kutler J., Lim T.., (2006), A landsat surface reflectance dataset for North America, 1990-2000. IEEE Geoscience and Remote Sensing Letters 3(1): 68–72.

Roy DP, Ju J, Kline K., Scaramuzza PL, Kovalskyy V., Hansen M., Loveland TR, Vermote E., Zhang C., (2010), Web-enabled Landsat Data (WELD): Landsat ETM+ composited mosaics of the conterminous United States. Remote Sensing of Environment 114(1): 35–49.

Wulder M., Loubier E., Richardson D., (2002), Landsat 7 ETM+ orthoimage coverage of Canada. Canadian Journal of Remote Sensing 28(5): 667–671.

Xian G, Homer C, Fry J (2009), Updating the 2001 National Land Cover Database land cover classification to 2006 by using Landsat imagery change detection methods. Remote Sensing of Environment 113(6):1133–1147.


  • There are currently no refbacks.