Wismu Sunarmodo, Anis Kamilah Hayati


In the processing and analysis of remote-sensing data, cloud that interferes with earth-surface data is still a challenge. Many methods have already been developed to identify cloud, and these can be classified into two categories: single-date and multi-date identification. Most of these methods also utilize the thresholding method which itself can be divided into two categories: local thresholding and global thresholding. Local thresholding works locally and is different for each pixel, while global thresholding works similarly for every pixel. To determine the global threshold, two approaches are commonly used: fixed value as threshold and adapted threshold. In this paper, we propose a cloud-identification method with an adapted threshold using K-means clustering. Each related multitemporal pixel is processed using K-means clustering to find the threshold. The threshold is then used to distinguish clouds from non-clouds. By using the L8 Biome cloud-cover assessment as a reference, the proposed method results in Kappa coefficient of above 0.9. Furthermore, the proposed method has lower levels of false negatives and omission errors than the FMask method.


cloud identification; Landsat-8; K-means clustering

Full Text:



Champion, N. (2012). Automatic cloud detection from multi-temporal satellite images: Towards the use of Pléiades time series. ISPRS - International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, XXXIX-B3 (September), 559–564. doi:0.5194/isprsarchives-xxxix-b3-559-2012

Foga S. C., Scaramuzza, P., Guo, S., Zhu, Z., Diley, R., Beckman, T. … Laue, B. (2017). Cloud detection algorithm comparison and validation for operational Landsat data products. Remote Sensing of Environment, 194, 379–390. doi:10.1016/j.rse.2017.03.026

Goodwin, N. R., Collett, L., Denham, R. J., & Flood, N. (2013). Cloud and cloud shadow screening across Queensland, Australia: An automated method for Landsat TM/ETM+ time series. Remote Sensing of Environment, 134, 50–65. doi:10.1016/j.rse.2013.02.019

Hagolle, O., Huc, M., Villa Pascual, D., & Dedieu, G. (2010). A multi-temporal method for cloud detection, applied to FORMOSAT-2, VENμS, LANDSAT and SENTINEL-2 images. Remote Sensing of Environment, 114(8), 1747–1755. doi:10.1016/j.rse.2010.03.002

Huang, C., Thomas, N., Goward, S. N., Masek, J. G., Zhu, Z., Townsend, J. R. G., & Vogelmann, J. E. (2010). Automated masking of cloud and cloud shadow for forest change analysis using Landsat images. International Journal of Remote Sensing, 31(20), 5449–5464. doi:10.1080/01431160903369642

Irish, R. R., Barker, J. L., Goward, S. N., & Arvidson, T. (2006). Characterization of the Landsat-7 ETM+ automated cloud-cover assessment (ACCA) algorithm. Photogrammetric Engineering and Remote Sensing, 72(10), 1179–1188. doi:10.14358/PERS.72.10.1179

Jin, S., Homer, C. G., Yang, L., Xian, G., Fry, J., Danielson, P., & Townsend, P. A. (2013). Automated cloud and shadow detection and filling using two-date Landsat imagery in the USA. International Journal of Remote Sensing, 34(5), 1540–1560. doi:10.1080/01431161.2012.720045

Li, Z., Shen, H., Li, H., Xia, G., Gamba, P., & Zhang, L. (2017). Multi-feature combined cloud and cloud shadow detection in GaoFen-1 wide field of view imagery. Remote Sensing of Environment, 191(April 2013), 342–358. doi:10.1016/j.rse.2017.01.026

Lin, C., Tsai, P.-H., Lai, K.-H., & Chen, J.-Y. (2013). Cloud removal from multitemporal satellite images using information cloning. IEEE Transactions on Geoscience and Remote Sensing, 51(1), 232–241.

Llano, X. C. (2019). CloudMasking. GitHub repository. Retreived from

Pedregosa, F., Varoquaux, G. Gramfort, A., Michel, V., Thirion, B., Grisel, O., …

Duchesnay, E. (2011), Scikit-learn: Machine learning in Python. Journal of Machine Learning Research, 12, 2825-2830.

Sedano, F., Kempeneers, P., Strobl, P., & Kucera, J. (2011). A cloud mask methodology for high resolution remote sensing data combining information from high and medium resolution optical sensors. ISPRS Journal of Photogrammetry and Remote Sensing, 66(5), 588–596. doi:10.1016/j.isprsjprs.2011.03.005

Tang, H., Yu, K., Hagolle, O., & Jiang, K. (2013). A cloud detection method based on a time series of MODIS surface reflectance images. International Journal of Digital Earth, 6(1), 157–171. doi:10.1080/17538947.2013.833313

U.S. Geological Survey (2016). L8 Biome cloud validation masks. U.S. Geological Survey, data release. doi:10.5066/F7251GDH

Zhu, Z., Qui, S., He, B., & Deng, C. (2019). Cloud and cloud shadow detection for Landsat images: The fundamental basis for analyzing Landsat time series. Remote Sensing Time Series Image Processing, (May), 3–23.

Zhu, Z. & Woodcock, C. E. (2012). Object-based cloud and cloud shadow detection in Landsat imagery. Remote Sensing of Environment, 118, 83–94. doi:10.1016/j.rse.2011.10.028

Zhu, Z. & Woodcock, C. E. (2014). Automated cloud, cloud shadow, and snow detection in multitemporal Landsat data: An algorithm designed specifically for monitoring land cover change. Remote Sensing of Environment, 152, 217–234. doi:10.1016/j.rse.2014.06.01


  • There are currently no refbacks.