SPATIO-TEMPORAL ANOMALIES IN SURFACE BRIGHTNESS TEMPERATURE PRECEDING VOLCANO ERUPTIONS DETECTED BY THE LANDSAT-8 THERMAL INFRARED SENSOR (CASE STUDY: KARANGETANG VOLCANO)

Suwarsono Suwarsono, Djoko Triyono, Muhammad Rokhis Khomarudin, Rokhmatuloh Rokhmatuloh

Abstract

Indonesia's geological as part of the “ring of fire†includes the consequence that community life could be affected by volcanic activity. The catastrophic incidence of volcanic eruptions in the last ten years has had a disastrous impact on human life. To overcome this problem, it is necessary to conduct research on the strengthening of the early warning system for volcanic eruptions utilising remote sensing technology.  This study analyses spatial and temporal anomalies of surface brightness temperature in the peak area of Karangetang volcano during the 2018-2019 eruption. Karangetang volcano is an active volcano located in North Sulawesi, with a magmatic eruption type that releases lava flow. We analyse the anomalies in the brightness temperature from channel-10 of the Landsat-8 TIRS (Thermal Infrared Scanner) time series during the period in question. The results of the research demonstrate that in the case of Karangetang Volcano the eruptions of 2018-2019 indicate increases in the surface brightness temperature of the crater region. As this volcano has many craters, the method is also very useful to establish in which crater the center of the eruption occurred.

Keywords

Surface brightness temperature, Karangetang Volcano, magmatic eruption, Landsat-8 TIRS

Full Text:

PDF

References

Blackett, M. (2014). Early analysis of Landsat-8 thermal infrared sensor imagery of volcanic activity. Remote Sensing, 6, 2282-2295.

Budianto, A., Kartadinata, M.N., & Kusdaryanto (2000). Peta Geologi Gunungapi Karangetang, Sulawesi Utara Skala 1: 50.000 (Geological Map of the Karangetang Volcano, North Sulawesi) Scale 1:50,000. Direktorat Vulkanologi. Bandung.

Chander, G., Markham, B.L., & Helder, D.L. (2009). Summary of current radiometric calibration coefficients for Landsat MSS, TM, ETM+, and EO-1 ALI sensors. Remote Sensing of Environment, 113, 893-903.

Global Volcanism Program (2013). Karangetang(267020) in Volcanoes of the World, v. 4.10.1 (29 Jun 2021). Venzke, E (ed.). Smithsonian Institution. Retrieved from https://volcano.si.edu/volcano.cfm?vn=267020 (accessed on 29 June 2021).

Harris, A.J.L., Flynn, L.P., Keszthelyi, L.P., Mouginis-Mark, P.J., Rowland, S.K., & Resing, J.A. (1998). Calculation of lava effusion rates from Landsat TM data. Bulletin of Volcanology 60(1), 52-71. DOI: 10.1007/s004450050216.

Irons, J. R., Dwyer, J. L., & Barsi, J. A. (2012). The next Landsat satellite: The Landsat Data Continuity Mission. Remote Sensing of Environment, 122, 11–21.

Kusumadinata, K. (1979). Data dasar gunung api indonesia (Catalogue of References on Indoesian Volcanoes). Direktorat Vulkanologi, Bandung.

Lacava, T., Marchese, F., Arcomano, G., Coviello, I., Falconieri, A., Faruolo, M., Pergola, N., & Tramutoli, V. (2014).Thermal Monitoring of Eyjafjöll Volcano Eruptions by Means of Infrared MODIS Data. IEEE Applied Earth Observations and Remote Sensing, 7(8), 3393-3401.

MAGMA Indonesia-Pusat Vulkanologi dan Mitigasi Bencana Geologi (Centre of Volcanology and Geological Hazard Mitigation) (2020). Informasi Letusan (Information of the Volcano Eruption). Retrieved from https://magma.esdm.go.id/v1/gunung-api/informasi-letusan/210/show?signature=4b6df80e121d935202ee11abb08e8b863c5e43d48fc9903e5569343f8f77348b (accessed on 17 December 2020).

Marchese, F., Ciampa, M., Filizola, C., Lacava, T., Mazzeo, G., Pergola, N., & Tramutoli, V. (2010). On the exportability of Robust Satellite Techniques (Rst) for active volcano monitoring. Remote Sensing, 2, 1575-1588; doi:10.3390/rs2061575.

Marchese, F., Genzano, N., Neri, M., Falconieri, A., Mazzeo, G., & Pergola, N. (2019). A multi-channel algorithm for mapping volcanic thermal anomalies by means of Sentinel-2 MSI and Landsat-8 OLI data. Remote Sensing, 11, 2876; doi:10.3390/rs11232876.

Marshak, S. (2013). Essentials of Geology. Fourth edition. New York: W.W. Norton & Company Inc.

MODVOLC, near-real-time satellite monitoring of global volcanism using MODIS. (2021). Retrieved from http://modis.higp.hawaii.edu/(accessed on 28 June 2021).

Mazzeo, G., Ramsey, M.S., Marchee, F., Genzano, N., & Pergola, N. (2021). Implementation of the NHI (Normalized Hot Spot Indices) Algorithm on Infrared ASTER Data: Results and Future Perspectives. Sensors, 21(4), 1538.

Mia, M.B., Fujimitsu, Y., & Nishijima, J. (2017). Thermal Activity Monitoring of an Active Volcano Using Landsat 8/OLI-TIRS Sensor Images: A Case Study at the Aso Volcanic Area in Southwest Japan. Geosciences, 7(4), 118.

Patrick, M., Dean, J., & Dehn, K. (2005). Numerical modeling of lava flow cooling applied to the 1997 Okmok eruption: Comparison with advanced very high resolution radiometer thermal imagery. Journal of Geophysical Research, 110, B02210, doi:10.1029/2003JB002538.

Pieri, D. & Abrams, M. (2004). ASTER watches the world’s volcanoes: a new paradigm for volcanological observations from orbit. Journal of Volcanology and Geothermal Research, 135, 13–28.

Pratomo, I. (2006). Klasifikasi gunung api aktif Indonesia, studi kasus dari beberapa letusan gunung api dalam sejarah (Classification of Indonesian active volcanoes, case studies of several volcanic eruptions in history). Jurnal Geologi Indonesia, 1(4), 209-227.

Schott, J., Gerace, A., Brown, S., Gartley, M., Montanaro, M., Reuter, D.C. (2012). Simulation of image performance characteristics of the Landsat Data Continuity Mission (LDCM) Thermal Infrared Sensor (TIRS). Remote Sensing, 4, 2477–2491.

Suwarsono, Hidayat, Suprapto, T., Yulianto, F., Sari, N.M., Parwati, & Asriningrum, W. (2015). Deteksi gejala erupsi strombolian Gunungapi Raung Jawa Timur menggunakan normalized thermal index dari data MODIS (Detection of the strombolian eruption of Raung Volcano, East Java using the normalized thermal index from MODIS data). Jurnal Penginderaan Jauh, 12(2), 133-145.

Suwarsono, Triyono, D., Khomarudin, M.R., & Rokhmatuloh. (2020). Surface temperature changes of the crater of Agung Volcano from Landsat-8 TIRS

during 2017-2018 eruption. Journal of Physics: Conference Series, 4th International Seminar on Sensors, Instrumentation, Measurement and Metrology. doi:10.1088/1742-6596/1528/1/012052.

Suwarsono, Triyono, D., Khomarudin, M.R., & Rokhmatuloh. (2021). Detecting the surface temperature anomaly of the Anak KrakatauVolcano using Landsat-8 TIRS during 2018 eruption. IOP Conference Series: Earth and Environmental Science, Volume 739, The 1st Universitas Lampung International Conference on Science, Technology and Environment 18-19 November 2020, Bandar Lampung, Indonesia, doi.org/10.1088/1755-1315/739/1 /012090.

Trifonov, G.M., Zhizhin, M.N., Melnikov, D.V., Poyda, A.A. (2017). VIIRS Nightfire Remote Sensing Volcanoes. Procedia Computer Science ,119, 307–314.

Wright R., Flynn L.P., & Harris A.J.L. (2001). Evolution of lava flow-fields at Mount Etna,27-28 October 1999, observed by Landsat 7 ETM+. Bulletin Volcanolology, 63, 1-7.

Wright, R., & Flynn, L.P. (2003). On the retrieval of lava-flow surface temperatures from infrared satellite data. Geology, 31, 893–96.

Wright, R., Flynn, L.P., Garbeil, H., Harris, A.J.L., & Pilger, E. (2004). MODVOLC: near real-time thermal monitoring of global volcanism. Journal of Volcanology and Geothermal Research, 135, 29–49.

Zanter, K. (ed). (2015). Landsat 8 (L8) Data Users Handbook Version 1.0. vol. 8. Department of the Interior U.S. Geological Survey. Sioux Falls, South Dakota.

Refbacks

  • There are currently no refbacks.