VALUASI JUMLAH AIR DI EKOSISTEM LAHAN GAMBUT DENGAN DATA LANDSAT 8 OLI/TIRS (WATER CONTENT VALUATION IN PEATLAND ECOSYSTEM BY USING LANDSAT 8 OLI/TIRS)

Idung Risdiyanto, Alan Nur Wahid

Abstract

The water content of peatland ecosystems stored as gasses in the air and as liquid in the peat soil and vegetation. The presence of water was influential to the value of spectral radians received by satellite sensors. Objective of study were develop empirical model to be applied in the Landsat 8 satellite imagery interpretation to estimate water content of peatland ecosystem. Method consisted of field measurements and satellite data interpretation. Field activities aimed to obtain weather parameters such as radiation, air temperature, surface temperature, evapotranspiration (ET), relative humidity (RH), soil water content (KAT), and biomass for each land cover in peatland ecosystems. Field measurements results were used to validate the parameters derived from Landsat 8 satellite data. Water content in the air was assessed by the ET and RH, in the soil was assessed by soil heat flux (G) and in the vegetation by biomass. The results of the validation of the data field measurement with Landsat 8 showed only ET (r2 = 0.71), RH (r2 = 0.71), and biomass (r2 = 0.87) had a strong relationship, while between G and KAT had weak relationship. Conclusion of this study indicated Landsat 8 satellite data could be used to calculate the water content in the air and vegetation. Thus, estimating water content in the peatland ecosystem with satellite data can only be done on the surface.

 

Abstrak

Ekosistem lahan gambut menyimpan air dalam bentuk gas di udara, dan cair dalam tanah gambut dan vegetasi. Keberadaannya mempengaruhi nilai spektral radians yang diterima oleh sensor satelit. Tujuan penelitian ini adalah untuk mendapatkan model empirik yang dapat diaplikasikan untuk interpretasi citra satelit dalam pendugaan jumlah air di ekosistem lahan gambut. Metode penelitian terdiri dari pengukuran lapangan dan interpretasi data satelit LANDSAT 8. Parameter cuaca seperti radiasi, suhu udara, suhu permukaan, evapotranspirasi (ET), kelembaban udara (RH), kadar air tanah (KAT) dan biomassa diukur di lapangan pada setiap jenis tutupan lahan. Hasil-hasil pengukuran lapangan digunakan untuk memvalidasi parameter-parameter yang diturunkan dari data satelit LANDSAT 8. Jumlah air di udara yang dinilai dari ET dan RH, jumlah air di tanah dinilai dengan laju pemanasan tanah (G) dan jumlah air di vegetasi dengan biomassa. Hasil validasi antara data lapangan dengan data LANDSAT 8 menunjukkan hanya nilai ET (r2=0,71), RH (r2=0,71), dan biomassa ((r2=0,87) mempunyai hubungan yang kuat, sedangkan nilai G tidak mempunyai hubungan yang kuat dengan KAT. Penelitian ini menyimpulkan bahwa data satelit LANDSAT 8 hanya dapat digunakan untuk menghitung jumlah air yang tersimpan di udara dan vegetasi. Oleh karena itu, pendugaan jumlah air di ekosistem lahan gambut dengan data satelit hanya dapat dilakukan di atas permukaan.

Keywords

biomass; Landsat 8; moisture; peat; water; air; biomassa; gambut; kelembaban; Lansat 8

Full Text:

PDF

References

Allen R.G, Morse A., Tasumi M., Bastiaansen W., Kramber W., and Anderson H., 2001. Evapotranspiration from LANDSAT (SEBAL) for Water Right Management and Compliance with Multi-State water Compacts. University of Idaho Kimberly, ID 83341.

Amenu, G.G., P., Kumar, and X. Z., Liang, 2005. Interannual variability of Deep-Layer Hydrologic Memory and Mechanisms of its Influence on Surface Energy Fluxes, J. Clim., 18, 5024– 5045, doi:10.1175/JCLI3590.1.

Avitabile, V., Baccini, A., Friedl, M.A., and Schmullius, C., 2012. Capabilities and Limitations of LANDSAT and Land Cover Data for Aboveground Woody Biomass Estimation of Uganda. Remote Sens. Environ. 117, 366–380.

Baccini, A., Goetz, S.J., Walker, W.S., Laporte, N.T., Sun, M., Sulla-Menashe, D., Hackler, J., Beck, P.A., Dubayah, R., and Friedl, M.A., 2012. Estimated Carbon Dioxide Emissions from Tropical Deforestation Improved by Carbon-Density Maps. Nat. Clim. Chang. Vol. 2, 182–185.

BB Litbang SDLP (Balai Besar Penelitian dan Pengembangan Sumberdaya Lahan Pertanian, 2008. Laporan Tahunan 2008, Konsorsium Penelitian dan Pengembangan Perubahan Iklim pada Sektor Pertanian. Balai Pesar Penelitian dan Pengembangan Sumberdaya Lahan Pertanian. Bogor.

Bourgault, M.A., Larocque, M., and Garneau, M., 2017. Quantification of Peatland Water Storage Capacity Using the Water Table Fluctuation Method. Hydrological Process. Vol. 31, Issue 5 1184–1195.

Bullock A., and Acreman M., 2003. The Role of Wetlands in the Hydrological Cycles. Hydrology and Earth System Sciences, 7, (3), 358.

Campbell D.I., Laybourne C.E., Ian J.B., 2002. Measuring Peat Moisture Content Using the Dual-Probe Heat Pulse Technique. Soil Research 40, 177-190. https://doi.org/ 10.1071/SR00108.

Castelli, F., Entekhabi, D., and Caporali, E., 1999. Estimation of Surface Heat Flux and an Index of Soil Moisture Using Adjoint-state Surface Energy Balance. Water Resources Research, Vol. 35, No. 10, 3115-3125.

Chambers, F.M., Beilman, D.W., and Yu, Z., 2010. Methods for Determining Peat Humification and for Quantifying Peat Bulk Density, Organic Matter and Carbon Content for Palaeostudies of Climate and Peatland Carbon Dynamics. Mires and Peat, Volume 7 (2010/11), Article 07, 1–10, http://www.mires-and-peat.net/.

Chan, S., Bindlish, R., Hunt, R., Jackson, T., and Kimball, J., 2013. Vegetation Water Content-Ancillary Data Report-Preliminary v.1 SMAP Science Document no. 047. JPL D-53061. California Institute of Technology.

da Rocha Campos, J.R., Silva, A.C., Fernandes, J.S.C., Ferreira, M.M., and Silva, D.V., 2011. Water Retention in a Peatland With Organic Matter In Different Decomposition Stages. R. Bras. Ci. Solo, 35:1217-1227.

Dharmawan, I.W.S., 2014. Persamaan Alometrik dan Cadangan Karbon Vegetasi pada Hutan Gambut Primer dan Bekas Terbakar (Allometric Equation and Vegetation Carbon Stock at Primary and Burnt Peat Forest). Jurnal penelitian hutan dan konservasi alam. Vol. 10 No. 2: 175-191.

DOI: 10.1002/hyp.11116.

doi:10.1029/2000JD900051.

Doi:10.1029/2005gl023971.

doi:10.1029/2008JD009807.

doi:10.1088/1755-1315/33/1/012040.

doi:10.1111/j.1365-2389.1992.tb00115.x.

doi:10.4172/2169-0049.1000120.

Duffkova, R., 2006. Difference in Canopy and Air Temperature as an Indicator of Grassland Water Stress. Soil & Water Res., 1, 2006 (4): 127–138.

Emrich A., Pokorny B., Sepp C., 2000. The Significance of Secondary Forest Management for Development Policy. Eschborn. Deutsche Gesellschaft für Technische Zusammenarbeit (GTZ) GmbH.

Entin, J., A., Robock, K. Y., Vinnikov, S. E., Hollinger, S., Liu, and A., Namkai, 2000. Temporal and Spatial Scales of Observed Soil Moisture Variations in the Extratropics. J. Geophys. Res., 105, 11,865 – 11,877.

Fakhrul M., dan Risdiyanto I., 2015. Analisis Spektral Citra Satelit LANDSAT 8 untuk Menduga Simpanan Karbon Biomassa di Hutan Dataran Rendah. [skripsi]. Bogor (ID). Institut Pertanian Bogor.

Gentine, P., Enkhabi, D., and Heusinkveld, B., 2012. Systematic Errors in Ground Heat Flux Estimation and their Correction. Water Resources Research, Vol. 48, W09541, doi:10.1029/2010wr010203, 2012.

Grand-Clement, E., et al., 2015. New Approaches to the Restoration of Shallow Marginal Peatlands. Journal of Environmental Management. xxx (2015) 1-14. http:// dx.doi.org/10.1016/j.jenvman.2015.06.023.

Hairiah K., and Rahayu S., 2007. Pengukuran ‘Karbon Tersimpan’ di Berbagai Macam Penggunaan Lahan. Bogor. World Agroforestry Centre-ICRAF, SEA Regional Office, University of Brawijaya, Unibraw, Indonesia. 77.

Hashimoto, T., Tange, T., Masumori, M., Yagi, H., Sasaki, S., and Kojima, K., 2004. Allometric Equations for Pioneer Tree Species and Estimation of Aboveground Biomass af a Tropical Secondary Forest in East Kalimantan. Tropics 14(1): 123-130.

Hero, B., Ayu, N., Manuri, S., dan Istomo, 2010. Pendugaan Biomassa dan Potensi Karbon Terikat di Atas Permukaan Tanah pada Hutan Rawa Gambut Bekas Terbakar di Sumatera Selatan. Jurnal Ilmu Pertanian Indonesia. ISSN. 15(1):41-49.

Hillel, G., 1998. Remote Sensing of Vegetation: Principle, techniques, and Apliccation. Oxvord university press.

Hirschi M., Mueller B., Dorigo W., Seneviratne, S.I., 2014. Using Remotely Sensed Soil Moisture for Land–Atmosphere Coupling Diagnostics: the Role of Surface Vs. Root-Zone Soil Moisture Variability. Remote Sensing of Environment 154, 246–252.

Honkavaara, E., Eskelinen, M.A., Pölönen, I., Saari, H., Ojanen, H., Mannila, R., Holmlund, C., Hakala, T., Litkey, P., Rosnell, T., Viljanen, N., and Pulkkanen, M., 2016. Remote Sensing of 3-D Geometry and Surface Moisture of a Peat Production Area Using Hyperspectral Frame Cameras in Visible to Short-Wave Infrared Spectral Ranges Onboard a Small Unmanned Airborne Vehicle (UAV). IEEE Transactions on Geoscience and Remote Sensing, vol. 54, No. 9 (5440-5454).

Iriana, W., Tonokura, K., Kawasaki, M., Inoue, G., Kusin, K., and Limin, S.H., 2016. Measurement of Carbon Dioxide Flux from Tropical Peatland in Indonesia Using the Nocturnal Temperature-Inversion Trap Method. Environ. Res. Lett. 11, doi:10.1088/1748-9326/11/ 9/095011.

Jin, X., Ma J., Wen, Z., and Song, K., 2015. Estimation of Maize Residue Cover Using LANDSAT-8 OLI Image Spectral Information and Textural Features. Remote Sens. 2015, 7, 14559-14575; doi:10.3390/rs71114559.

Joosten H., Clarke D., 2002. Wise use of Mires and Peatlands: Background and Principles Including a Framework for Decision-Making. International Mire Conservation Group and International Peat Society. Saarijärvi, Finland. 304.

Kasischke, E.S, Bourgeau-Chavez, L.L, Rober, A.R, Wyatt, K.H., Waddington, J.M., Turetsky, M.R., 2009. Effects of Soil Moisture and Water Depth on ERSSAR Backscatter Measurements from an Alaskan Wetland Complex. Remote Sensing of Environment. 113 (2009): 1868-1873.doi:10.1016/j.rse.2009.04. 006.

Kettridge, N., Turetsky, M.R., Sherwood, J.H., Thompson, D.K., Miller, C.A., Benscoter, B.W., Flannigan, M.D., Wotton, B.M., Waddington, J.M., 2015. Moderate Drop in Water Table Increases Peatland Vulnerability to Post-Fire Regime Shift. Scientific Reports. http:// dx.doi.org/10.1038/srep08063.

Khomarudin, M.R., Bey, A., dan Risdiyanto, I., 2005. Identifikasi Neraca Energi di Beberapa Penggunaan Lahan untuk Deteksi Daerah Potensi Kekeringan di Surabaya, Gresik, dan Sidoarjo. Pertemuan Ilmiah Tahunan MAPIN XIV. Surabaya.

Kramarenko, V.V., Nikitenkov, A.N., Molokov, V.Y., Shramok, A.V., and Pozdeeva, G.P., 2015). Application of Microwave Method for Moisture Determination of Organic and Organic-Mineral Soils. IOP Conf. Series: Earth and Environmental Science 33 (2016) 012040.

Krankina, O.N., Pflugmacher, D., Friedl, M., Cohen, W.B., Nelson, P., and Baccini, A., 2008. Meeting the Challenge of Mapping Peatlands with Remotely Sensed Data. Biogeosciences, 5, 1809–1820, 2008.

Krisnawati, H., W.C. Adinugroho dan R., Imanuddin, 2012. Monograph: Allometric Models for Estimating Tree Biomass at Various Forest Ecosystem Types in Indonesia. Research and Development Center for Concervation and Rehabilitations, Forest Research and Development Agency, Bogor, Indonesia.

Lefsky, MA., Harding DJ., Keller, M., Cohen, WB., Carabajal, CC., Espirito-Santo, FB., Hunter, MO., and Oliveira Jr, R., 2005. Estimates of Forest Canopy Height and Aboveground Biomass Using ICESat. Geophysical Research Letters, Vol. 32, L22s02.

Liu, W., Hong, Y., Khan, SI., Huang, M., Vieux, B., Caliskan, S., and Grout, T., 2010. Actual Evapotranspiration Estimation for Different Land use and Land Cover in Urban Regions Using LANDSAT 5 Data. Journal of Applied Remote Sensing, Vol. 4, 041873. DOI: 10.1117/1.3525 566.

Malingreau, Jean-Paul, 1981. A Land Cover Classification for Indonesia. The Indonesian Journal of Geography. Faculty of Geograpy. Gadjah Mada University. 11 (41):13-50.

McCabe, M.F. and Wood, E.F., 2006. Scale Influences on the Remote Estimation of Evapotranspiration Using Multiple Satellite Sensors. Remote Sensing Of Environment 105 (2006) 271–285. doi: 10.1016/j.rse.2006.07.006.

Meingast, K.M., Falkowski, M.J., Kane, E.S., Potvin, L.R., Benscoter, B.W., Smith, A.M.S., Bourgeau-Chavez, L.L., Miller, M.E., 2014. Spectral Detection of Near-Surface Moisture Content and Water-Table Position in Northern Peatland Ecosystems. Remote Sensing Of Environment 152 (2014) 536–546. http://dx.doi.org/10.1016/j.rse.2014.07.014 0034-4257.

Middleton, M., Närhi, P., Arkimaa, H., Hyvönen, E., Kuosmanen, V., Treitz, P., and Sutinen, R., 2012. Ordination and Hyperspectral Remote Sensing Approach to Classify Peatland Biotopes Along Soil Moisture and Fertility Gradients. Remote Sensing of Environment, Vol.124, 596-609, ISSN 0034-4257, http://dx.doi. org/10.1016/j.rse.2012.06.010.

Mutalib AA, Lim JS, Wong MH dan Koonvai L., 1991. Characterization, Distribution and Utilization of Peat in Malaysia. Proc. International Symposium on tropical peatland. 6-10 May 1991, Kuching, Serawak, Malaysia.

Noborio, K., 2001. Measurement of Soil Water Content and Electrical Conductivity by Time Domain Reflectometry: a Review. Computers and Electronics in Agriculture, Vol.1, Issue 3, pp 213-237, ISSN 0168-1699, http://dx.doi.org/10.1016/S0 168-1699(00)00184-8.

Oke TR., 1978. Boundary Layer Climates. London: Methuen & Co Ltd.

Omar T., and Farouki, 1981. Thermal Properties of Soils. United States Army Corps Of Engineers Cold Regions Research And Engineering Laboratory. Hanover, New Hampshire, U.S.A.

Petropoulos G.P, Griffiths H.M, Dorigo W, Xaver A., and Gruber A., 2014. Surface Soil Moisture Estimation: Significance, Controls, and Conventional Measurement Techniques. Remote Sensing of Energy Fluxes and Soil Moisture Content. Book Chapter 2: 29-47.

Querner, E.P., Mioduszewski, W., Povilaitis, A., Ślesicka, A., 2010. Modelling Peatland Hydrology: Three Cases from Northern Europe. Polish J. of Environ. Stud, Vol. 19, No.1, 149-159.

Roth, C.H., Malicki, M.A., Plagge, R., 1992. Empirical Evaluation of the Relationship Between Soil Dielectric Constant and Volumetric Water Content as the Basis for Calibrating Soil Moisture Measurements by TDR. Journal of Soil Science, 43: 1–13.

Saleh S.A.H., & Hasan, G., 2014. Estimation of PM10 Concentration Using Ground Measurements and LANDSAT 8 OLI Satellite Image. J Geophys Remote Sens 3:120.

Sauer, T.J and Horton, R., 2005. Soil Heat Flux. Publications from USDA-ARS/ UNL Faculty. 1402. http:// digitalcommons.unl.edu/usdaarsfacpub/1402.

Schlotzhauer, S.M., and Price, J.S., 1999. Soil Water Flow Dynamics in a Managed Cutover Peat Field, Quebec: Field and Laboratory Investigations. Water Resources Research, vol. 35, no. 12, 3675–3683.

Shien, P.T., Seneviratne, H.N. and Ismail, A.D.S., 2011. A Study on Factors Influencing the Determination of Moisture Content of Fibrous Peat. UNIMAS E-Journal of Civil Engineering, Vol. 2 (2), 39-47.

Stull RB., 1995. Meteorology Today for Scientictic and Engeineers, a Technical Compinion Book. USA: West Publishing Company.

U.S. Geological Survey, 2016. LANDSAT 8 (L8) Data Users Handbook. LSDS-1574 Version 2.0.

Wang, S., Fu, B.J., Gao, G.Y., Yao, X.L. and Zhou, J., 2012. Soil Moisture and Evapotranspiration of Different Land Cover Types in the Loess Plateau, China. Hydrol. Earth Syst. Sci., 16, 2883–2892.doi:10.5194/hess-16-2883- 2012.

Wu, W., & Dickinson, R.E., 2004,). Time Scales of Layered Soil Moisture Memory in the Context of Land-Atmosphere Interaction. J. Clim., 17, 2752 – 2764, doi:10.1175/ 1520-0442(2004)0172.0.

Zhang, J., W.-C. Wang, and J., Wei, 2008. Assessing Land-Atmosphere Coupling Using Soil Moisture from the Global Land Data Assimilation System and Observational Precipitation. J. Geophys. Res., 113, D17119,

Refbacks

  • There are currently no refbacks.