Identifikasi Potensi Rembesan Mikro di Lapangan Migas Melalui Deteksi Mineral Lempung Menggunakan Citra Landsat 8 OLI/TIRS, Studi Kasus Lapangan Migas Cekungan Jawa Barat Bagian Utara

Tri Muji Susantoro, Ketut Wikantika, Asep Saepuloh, Agus Handoyo Harsolumakso

Abstract

Clay minerals in the oil and gas field have changed with an increase of the quantities in the middle of the oil and gas field and reduction in the edges. This reduction is the effect of micro seepage from oil and gas from the subsurface. The aims of the research is to identify the potential oil and gas seepage through clay mineral mapping. The data used where Landsat 8 OLI/TIRS with recording dated September 25, 2015. The method used in the mapping of clay minerals using the ratio of 1.55-1.75 µm (Short Wave Infrared 1) and 2.08-2.35 µm (Short Wave Infrared 2). The result of Landsat 8 OLI/TIRS data processing shows the potential of anomalies in edges of the oil and gas field. The anomaly is a change in the index value of clay minerals that tend to be lower with values 1.0 to 1.5 than the middle of oil and gas field with values 1.5 to 2.0. The potential pattern of the anomaly follows the border of the oil and gas field. Field surveys show that oil and gas field based on grain size analysis is dominated by clay-sized soil. The dominant clay minerals from X-Ray Diffraction analysis are smectite (56%) and kaolinite (6%).

ABSTRAK

Mineral lempung di lapangan migas mengalami perubahan dengan terjadinya peningkatan kandungannya pada tengah lapangan migas dan pengurangan di tepinya. Pengurangan ini merupakan efek adanya rembesan mikro dari migas yang berasal dari bawah permukaan. Kajian ini bertujuan untuk mengidentifikasi adanya potensi rembesan migas melalui pemetaan mineral lempung. Adapun data yang digunakan adalah Landsat 8 OLI/TIRS dengan perekaman tanggal 25 September 2015. Metode yang digunakan pada pemetaan mineral lempung menggunakan perbandingan panjang gelombang 1.55-1.75 µm (Short Wave Infrared 1) dengan 2.08-2.35 µm (Short Wave Infrared 2). Hasil pengolahan data Landsat 8 OLI/TIRS menunjukkan adanya potensi anomali di tepi lapangan migas. Anomali tersebut berupa perubahan nilai indeks mineral lempung yang cenderung lebih rendah yaitu dengan nilai 1,0 – 1,5 dibandingkan lokasi di tengah lapangan yaitu dengan nilai 1,5 – 2,0.  Pola potensi anomali tersebut mengikuti batas tepi lapangan migas. Survei lapangan menunjukkan bahwa pada lapangan migas berdasarkan analisis ukuran butir didominasi oleh tanah berukuran lempung. Adapun mineral lempung yang dominan dari hasil analisis XRD berupa smektit (56%) dan terdapat kaolinit (6%).

Keywords

Mineral Lempung; Landsat 8 OLI/TIRS; Rembesan Mikro; Smektit; Kaolinit

Full Text:

PDF

References

Badan Litbang Kementerian Pertanian, (2014). Peta Sumberdaya Tanah Tingkat Tinjau Provinsi Jawa Barat dan DKI Jakarta. Skala 1:250.000. Kementerian Pertanian.

Clarke R.H. & Cleverly R.W., (1991). Petroleum Seepage and Post- Accumulation migration. In: England, W.A., and Fleet, A.J. (Eds.), Petroleum Migration. Geological Society Special Publication N. 59. Geological Society of London, Bath, pp 265–271.

Danoedoro, P. & Zukhrufiyati, A., (2015). Integrating Spectral Indices and Geostatistics Based on Landsat-8 Imagery for Surface Clay Content Mapping in Gunung Kidul Area, Yogyakarta, Indonesia. Proceeding of the 36th Asian Conference on Remote

Sensing, Yogyakarta. https://www.researchgate.net/ publication/302580476.

Drury, S.A., (1987). Image Interpretation in Geology. Department of Earth Sciences. The Open University. Allen & Unwin. London.

Everett, J.R., Staskowski, R.J. & Jengo, C., (2002). Remote Sensing and GIS Enable Future Exploration Success. Word Oil. Vol 223. No 11. Gulf Publishing Company. www.worldoil.com.

Eyer, J.A., Foreman, J.E. & Raney, G.L., (1977). Natural Oil Seep Detection in Marine Environments. Proceeding of the 9th Annual Offshore Technology Conference. May 2-5, 1977. Houston, Texas. USA.

Joshua, J., (2015). Hyperspectral Remote Sensing for Oil Exploration. Published in Science. Cited in http://www.slideshare.net/serjiojaya nthjoshua/hyperspectral-remote- sensing-for-oil-exploration. [2 April

.

Kusumadinata, R.P., (1980). Geologi Minyak dan Gas Bumi. Edisi kedua. Jilid I. Penerbit Institut Teknologi Bandung.

Mulyana, A., (2014). Studi Sekuen Stratigrafi Formasi Parigi Lapangan C Cekungan Jawa Barat Utara, Kabupaten Subang, Jawa Barat. Jurnal Ilmiah MTG. Vol, 7. No 1.

Nasution, F.A., Nugroho, B., Krisyunianto, A. & Bahtiar.A., (2008). Overview Petroleum System of Taliabu- Mangole Synrift in Sula Subbasin. Prosiding pada Pertemuan Ilmiah Tahunan IAGI ke-37. Agustus 2008. Hotel Horison, Bandung.

National Oceanic and Atmospheric Administration, (2015). Natural Oil Seeps in Southern California. Office of Response and Restoration. U.S. Department of Comerce.

National Aeronautics and Space Administration, (2011): Finding Oil and Gas from Space. Cited in https://apollomapping.com/wp- content/user_uploads/2011/11/ NASA_Remote_Sensing_Tutorial_Oil_a nd_Gas.pdf. [2 April 2016].

PPPTMGB LEMIGAS – SKK Migas, (2015).

Laporan Akhir Revitalisasi Pengelolaan Sumberdaya. Nomor: KUS- 128/SKKG3000/2015/S7. Jakarta.

Priyanto, B. & Fitriannur, M.R., (2008). Neogene Tectonic and Sedimentary Control to Hydrocarbon Generation in Banggai Basin, Eastern Sulawesi. Paper dipresentasikan pada Pertemuan Ilmiah Tahunan IAGI ke-

Agustus 2008. Hotel Horison, Bandung.

Romadhon, T.M., (2009). Pengaturan Production Sharing Contract dalam undang-Undang Minyak dan Gas. Jurnal Hukum No. 1 Vol 16. Cited in http://law.uii.ac.id/images/stories/J urnal%20Hukum/Topan%20Meiza%2 0Ramadhani.pdf. [ 2 April 2017].

Sabins, F.F., (1987). Remote Sensing Principles and Interpretation. W. H. Freeman and Company. New York.

Saunders, D.F., Burson, K.R. dan Thompson, C.K., (1999). Model for Hydrocarbon Microseepages and Related Near-Surface Alteration. Bull. Am. Ass. Petrol. Geology. 83. 170-185. Schumacher, D. & Abrams, A. A., (1996). Hydrocarbon Microseepage and its near-Surface Expression. AAPG Memoir

, pp.446.

Schumacher, D., (2001). Petroleum Exploration in Environmentally Sensitive Areas: Opportunities for Non- Invasive Geochemical and Remote Sensing Methods. Proceeding of the Rock the Foundation Convention. Canadian Society of Petroleum Geologist. Canada.

Smejkalova, E. & Bujok, P., (2012). Remote Sensing Methods in the Identification of Oil Contaminations. Geoscience Engineering. Vol. L VIII. Cited in http://gse.vsb.cz. [2 April 2017].

Shi, P., Fu, B. & Ninomiya, Y., (2010). Mapping Hydrocarbon Seepage- Induced Anomalies in the Arid Region, West China Using Multispectral Remote Sensing. Proceeding of the International Archives of the Photogrammetry, Remote Sensing and Spatial Information Science, Volume XXXVIII, Part 8, Kyoto Japan.

Sikka, D. B. & Shives, R. B. K., (2001). Mechanisms to Explain the Formation of Geochemical Anomalies over Oilfields. Proceeding of hte AAPG Hedberg Conference “Near-Surface Hydrocarbon migration: Mechanisms and Seepage Rates”, Vancouver, BC, Canada, 1-4.

Tian Q., (2012). Study on Oil and gas Reservoir Detecting Methods Using Hyperspectral Remote Sensing. Proceeding of the International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences. Volume XXXIX- B7. XXII ISPRS Congress, 25 August - 1 Sept 2012. Melbourne Australia.

Yang H., (1999). Imaging spectrometry for hydrocarbon microseepage.

Dissertation. TU Delft. Master of Science in Geology. ITC Publication Nuumber 76.

Yang, H., Meer. F.D.V.D. & Zhang, J. (2000). Aerospace Detection of Hydrocarbon-Induced Alteration- Chapter 7. In Hale, M. (ed). Geochemical Remote Sensing of the Subsurface. Handbook of Exploration Geochemistry. Vol. 7. Elsevier Science.B.V

Refbacks

  • There are currently no refbacks.