Budhi Gustiandi, Donna Monica, Andy Indradjad


The number of forest and land fires that were happened worldwide had been estimated to increase in the last years. Forest and land fires play a significant role in climate change because they are one of primary sources of carbondioxide and particulate matter that can affect chemical composition in the troposphere. To understand dynamics of forest and land fires in a wide scale, remote sensing satellite technology is considered as the most effective technique. Forest and land fires indicator products that are produced from remote sensing data processing are known widely as active fires or hot spots. A Joint Polar Satellite System generation 1 (JPSS-1) – also known as National Oceanic and Atmospheric Administration generation 20 (NOAA-20) – remote sensing satellite data processing system has been built to produce active fires or hotspots information automatically. The system is a development of existing Suomi National Polar-orbiting Partnership (Suomi-NPP) remote sensing satellite data processing system which is the predecessor of JPSS-1 / NOAA-20 satellite. System design, processing flow, and software used as parts of the system are elaborated in detail in this paper. Analysis of output products that are produced by the system are also described in detain in this paper. It is hoped that active fires or hotspots information products that are produced by the developed system can be utilized in national scale similar to their predecessor products that are produced by previous system, even they can be utilized in regional scale.


active fires; hot spots; remote sensing; Suomi-NPP; JPSS-1; NOAA-20

Full Text:



Abatzoglou, J. T., & Williams, A. P. (2016). Impact of anthropogenic climate change on wildfire across western US forests. Proceedings of the National Academy of Sciences, 113(42), 11770–11775.

Andreae, M. O., & Merlet, P. (2001). Emission of trace gases and aerosols from biomass burning. Global Biogeochemical Cycles, 15(4), 955–966.

Arino, O., Plummer, S., & Defrenne, D. (2005). Fire Disturbance: The Ten Years Time Series of the ATSR World Fire Atlas. In H. Lacoste (Ed.), Proceedings of the MERIS (A)ATSR Workshop. Frascati, Italy: European Space Agency (ESA).

Boles, S. H., & Verbyla, D. L. (1999). Effect of scan angle on AVHRR fire detection accuracy in interior Alaska. International Journal of Remote Sensing, 20(17), 3437–3443.

Bondur, V. G., Gordo, K. A., & Kladov, V. L. (2017). Spacetime Distributions of Wildfire Areas and Emissions of Carbon-Containing Gases and Aerosols in Northern Eurasia according to Satellite-Monitoring Data. Izvestiya, Atmospheric and Oceanic Physics, 53(9), 859–874.

Bucini, G., & Lambin, E. (2002). Fire impacts on vegetation in Central Africa: a remote-sensing-based statistical analysis. Applied Geography, 22(1), 27–48.

Cahoon Jr., D. R., Stocks, B. J., Levine, J. S., Cofer III, W. R., & Pierson, J. M. (1994). Satellite analysis of the severe 1987 forest fires in northern China and southeastern Siberia. Journal of Geophysical Research, 99(D9), 18,627-18,638.

Carmona-Moreno, C., Belward, A., Malingreau, J.-P., Hartley, A., Garcia-Alegre, M., Antonovskiy, M., … Pivovarov, V. (2005). Characterizing interannual variations in global fire calendar using data from Earth observing satellites. Global Change Biology, 11, 1537–1555.

Crutzen, P. J., & Andreae, M. O. (1990). Biomass Burning in the Tropics: Impact on Atmospheric Chemistry and Biogeochemical Cycles. Science, 250(4988), 1669–1678.

Csiszar, I. A., & Schroeder, W. (2008). Short-Term Observations of the Temporal Development of Active Fires From Consecutive Same-Day ETM+ and ASTER Imagery in the Amazon: Implications for Active Fire Product Validation. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 1(4), 248–253.

Di Bella, C. M., Jobbagy, E. G., Paruelo, J. M., & Pinnock, S. (2006). Continental fire density patterns in South America. Global Ecology and Biogeography, 15, 192–199.

DRL, D. R. L. (2017). Real-time Software Telemetry Processing System (RT-STPS) User’s Guide Version 6.0. Greenbelt, Maryland: Goddard Space Flight Center (GSFC). Retrieved from

Dwyer, E., Pinnock, S., Gregoire, J.-M., & Pereira, J. M. C. (2000). Global spatial and temporal distribution of vegetation fire as determined from satellite observations. International Journal of Remote Sensing, 21(6–7), 1289–1302.

Elvidge, C. D., Kroehl, H. W., Baugh, K. E., & Hao, W. M. (1995). Algorithm for the Retrieval of Fire Pixels From DMSP Operational Linescan System Data. Retrieved from

Freitas, S. R., Longo, K. M., Dias, M. A. F. S., Dias, P. L. S., Chatfield, R., Prins, E., … Recuero, F. S. (2005). Monitoring the Transport of Biomass Burning Emissions in South America. Environmental Fluid Mechanics, 5(1–2), 135–167.

Fuller, D. O., & Fulk, M. (2010). Comparison of NOAA-AVHRR and DMSP-OLS for operational fire monitoring in Kalimantan, Indonesia. International Journal of Remote Sensing, 21(1), 181–187.

Giglio, L., Kendall, J. D., & Tucker, C. J. (2000). Remote sensing of fires with the TRMM VIRS. International Journal of Remote Sensing, 21(1), 203–207.

Giglio, Louis, Csiszar, I., & Justice, C. O. (2006). Global distribution and seasonality of active fires as observed with the Terra and Aqua Moderate Resolution Imaging Spectroradimeter (MODIS) sensors. Journal of Geophysical Research, 111, G02016.

Goldberg, M. (2018). The Joint Polar Satellite System Overview. In IEEE International Geoscience and Remote Sensing Symposium (IGARSS) (pp. 1581–1584). Valencia, Spain: IEEE.

Goldberg, M. D., & Cikanek, H. A. (2016). The NOAA JPSS Satellite Program and Applications. In IEEE International Geoscience and Remote Sensing Symposium (IGARSS) (pp. 5524–5527). Beijing, China: IEEE.

Goldberg, M., & Zhou, L. (2017). The Joint Polar Satellite System - Overview, Instruments, Proving Ground and Risk Reduction Activities. In IEEE International Geoscience and Remote Sensing Symposium (IGARSS) (pp. 2776–2778). Fort Worth, Texas: IEEE.

Green, R. O. (1996). Estimation of Biomass Fire Temperature and Areal Extent from Calibrated AVIRIS Spectra. In AVIRIS Proceedings 1996 (JPL Publication 96-4) (pp. 105–113). Pasadena, California: Jet Propulsion Laboratory (JPL). Retrieved from

Gumley, L. (2017). Community Satellite Processing Package (CSPP): Current Status and Support for JPSS-1. Madison, Wisconsin. Retrieved from

Gustiandi, B. (2014). Otomatisasi Sistem Pengolahan Data Satelit Suomi National Polar-orbiting Partnership (NPP) Untuk Produksi Indikator Kebakaran Hutan/Lahan. In Prosiding Seminar Tanggap Bencana (SIGAP) (pp. 26–38). Semarang, Indonesia: Universitas Dian Nuswantoro Semarang.

Gustiandi, B., & Indradjad, A. (2013). Visible Infrared Imager Radiometer Suite (VIIRS) Active Fires Application Related Products (AFARP) Generation Using Community Satellite Processing Package (CSPP) Software. In Proceedings of The 34th Asian Conference on Remote Sensing (pp. SC02-893-SC02-900). Bali, Indonesia: Indonesian Remote Sensing Society and Asian Association on Remote Sensing.

Kaufman, Y. J., Tucker, C. J., & Fung, I. Y. (1989). Remote sensing of biomass burning in the tropics. Advances in Space Research, 9(7), 265–268.

Korontzi, S., Roy, D. P., Justice, C. O., & Ward, D. E. (2004). Modeling and sensitivity analysis of fire emissions in southern Africa during SAFARI 2000. Remote Sensing of Environment, 92(3), 376–396.

Lee, B. S., Alexander, M. E., Hawkes, B. C., Lynham, T. J., Stocks, B. J., & Englefield, P. (2002). Information systems in support of wildland fire management decision making in Canada. Computers and Electronics in Agriculture, 37(1–3), 185–198.

Lulla, K., Nellis, M. D., & Rundquist, B. (2013). The Suomi National Polar-orbiting Partnership Satellite ushers in a new era of Earth observations and partnership. Geocarto International, 28(2), 97–97.

Malevskii-Malevich, S. P., Mol’kentin, E. K., Nadezhina, E. D., Semioshina, A. A., Sall’, I. A., Khlebnikova, E. I., & Shklyarevich, O. B. (2007). Analysis of Changes in Fire-Hazard Conditions in the Forests in Russia in the 20th and 21st Centuries on the Basis of Climate Modeling. Russian Meteorology and Hydrology, 32(3), 154–161.

Marlon, J. R., Bartlein, P. J., Gavin, D. G., Long, C. J., Anderson, R. S., Briles, C. E., … Walsh, M. K. (2012). Long-term perspective on wildfires in the western USA. Proceedings of the National Academy of Sciences of the United States of America, 109(9), 3203–3204. Retrieved from

Menzel, W. P., Cutrim, E. C., & Prins, E. M. (1991). Geostationary Satellite Estimation of Biomass Burning in Amazonia During BASE-A. In J. S. Levine (Ed.), Global Biomass Burning: Atmospheric, Climatic, and Biospheric Implications (pp. 41–46). Cambridge, Massachusetts; London, England: The MIT Press.

Mokhov, I. I., Chernokulsky, A. V., & Shkolnik, I. M. (2006). Regional model assessments of fire risks under global climate changes. Doklady Earth Sciences, 411(2), 1485–1488.

Morisette, J. T., Giglio, L., Csiszar, I., Setzer, A., Schroeder, W., Morton, D., & Justice, C. O. (2005). Validation of MODIS Active Fire Detection Products Derived from Two Algorithms. Earth Interactions, 9(July), 9.1-9.25.

Nakayama, M., Maki, M., Elvidge, C. D., & Liew, S. C. (1999). Contextual algorithm adapted for NOAA-AVHRR fire detection in Indonesia. International Journal of Remote Sensing, 20(17), 3415–3421.

Portillo-Quintero, C., Sanchez-Azofeifa, A., & do Espirito-Santo, M. M. (2013). Monitoring deforestation with MODIS Active Fires in Neotropical dry forests: An analysis of local-scale assessments in Mexico, Brazil and Bolivia. Journal of Arid Environments, 97, 150–159.

Randriambelo, T., Baldy, S., Bessafi, M., Petit, M., & Despinoy, M. (1998). An improved detection and characterization of active fires and smoke plumes in south-eastern Africa and Madagascar. International Journal of Remote Sensing, 19(14), 2623–2638.

Raytheon. (2015). Joint Polar Satellite System (JPSS) Common Data Format Control Book - External Volume I - Overview. Greenbelt, Maryland: NASA, National Aeronautics and Space Administration. Retrieved from

Schroeder, W., & Giglio, L. (2016). Visible Infrared Imaging Radiometer Suite (VIIRS) 375 m Active Fire Detection and Characterization Algorithm Theoretical Basis Document 1.0. College Park, Maryland: University of Maryland. Retrieved from

Schroeder, W., Morisette, J. T., Csiszar, I., Giglio, L., Morton, D., & Justice, C. O. (2005). Characterizing Vegetation Fire Dynamics in Brazil through Multisatellite Data: Common Trends and Practical Issues. Earth Interactions, 9(July), 13.1-13.26.

Shvidenko, A. Z., & Schepaschenko, D. G. (2013). Climate Change and Wildfires in Russia. Contemporary Problems of Ecology, 6(7), 683–692.

Shvidenko, A. Z., Shchpashchenko, D. G., Vaganov, E. A., Sukhinin, A. I., Maksyutov, S. S., McCallum, I., & Lakyda, I. P. (2011). Impact of Wildfire in Russia between 1998-2010 on Ecosystems and the Global Carbon Budget. Doklady Earth Sciences, 441(Part 2), 1678–1682.

Sitnov, S. A., & Mokhov, I. I. (2017). Anomalous Transboundary Transport of the Products of Biomass Burning from North American Wildfires to Northern Eurasia. Doklady Earth Sciences, 475(Part 1), 832–835.

SSEC, S. S. and E. C. (2019a). Installation Instruction for the Community Satellite Processing Package (CSPP) VIIRS, ATMS, and CrIS SDR Version 3.1.2 Software for Suomi NPP and NOAA-20 (JPSS-1). Wisconsin, Madison: University of Wisconsin-Madison. Retrieved from

SSEC, S. S. and E. C. (2019b). Installation Instruction for the Community Satellite Processing Package (CSPP) VIIRS Active Fire Software Version 1.1.0. Retrieved from

van der Werf, G. R., Randerson, J. T., Giglio, L., Collatz, G. J., Mu, M., Kasibhatla, P. S., … van Leuwen, T. T. (2010). Global fire emissions and the contribution of deforestation, savanna, forest, agricultural, and peat fires (1997-2009). Atmospheric Chemistry and Physics, 10, 11707–11735.

van der Werf, Guido R., Randerson, J. T., Collatz, G. J., & Giglio, L. (2003). Carbon emission from fires in tropical and subtropical ecosystems. Global Change Biology, 9, 547–562.

Westerling, A. L., Hidalgo, H. G., Cayan, D. R., & Swetnam, T. W. (2006). Warming and Earlier Spring Increase Western U.S. Forest Wildfire Activity. Science, 313(5789), 940–943.

White, J. D., Ryan, K. C., Key, C. C., & Running, S. W. (1996). Remote Sensing of Forest Fire Severity and Vegetation Recovery. International Journal of Wildland Fire, 6(3), 125–136.

Wolfe, R. (2012). RT-STPS. Retrieved January 25, 2019, from

Yen, M.-C., Peng, C.-M., Chen, T.-C., Chen, C.-S., Lin, N., Tzeng, R.-Y., … Lin, C.-C. (2013). Climate and weather characteristics in association with the active fires in northern Southeast Asia and spring air pollution in Taiwan during 2010 7-SEAS/Dongsha Experiment. Atmospheric Environment, 78(October 2013), 35–50.

Zhou, L., Divakarla, M., & Liu, X. (2016). An Overview of the Joint Polar Satellite System (JPSS) Science Data Product Calibration and Validation. Remote Sensing, 8, 139.


  • There are currently no refbacks.