THE EFFECT OF TOPOGRAPHIC CORRECTION METHODS SUN CANOPY SENSOR + C CORRECTION (SCS + C) ON THE ACCURACY OF THE RESULTS OF VARIOUS CLASSIFICATION METHODS IN LANDSAT 8 SURFACE REFLECTANCE IMAGE

ferman setia nugroho

Abstract

In the land cover classification process using the optical system remote sensing satellite data, there are problems in hilly areas where the lighting on the slopes facing or backward from the sun produces different spectral responses. In this study, we will analyze the effect of topographic correction on the Sun Canopy Sensor + C Correction (SCS + C) method on the accuracy of the classification results on the LANDSAT 8 surface reflectance image using Google Earth Engine (GEE). The results showed an increase in classification accuracy after topographic correction using the Support Vector Machine (SVM) method, Classification and Regression Tree (CRT), Random Forest (RF), and Minimum Distance (MD), respectively 4.45%, 3.33%, 2.23%, and 2.22%. The topographic correction applied to the Maximum Entropy (ME) classification methods failed to improve accuracy. It can be concluded that topographic correction can improve the accuracy of land cover classification results, especially in hilly areas

Keywords

Topographic Correction, Classification, LANDSAT 8, Google Earth Engine, Support Vector Machine, Classification and Regression Tree, Random Forest, Minimum Distance, Maximum Entropy

Full Text:

PDF

References

Balthazar, V., Vanacker, V., & Lambin, E. F. (2012). Evaluation and parameterization of ATCOR3 topographic correction method for forest cover mapping in mountain areas. In International Journal of Applied Earth Observation and Geoinformation (Vol. 18, Issue 1). Elsevier B.V. https://doi.org/10.1016/j.jag.2012.03.010

Brinkhoff, J., Hornbuckle, J., & Barton, J. L. (2018). Assessment of aquatic weed in irrigation channels using UAV and satellite imagery. Water (Switzerland), 10(11), 1–20. https://doi.org/10.3390/w10111497

Chavez Jr., P. S. (1996). Image-Based Atmospheric Corrections - Revisited and Improved. Photogrammetric Engineering & Remote Sensing, 62(10), 1025–1036.

Chen, B., Xiao, X., Wu, Z., Yun, T., Kou, W., Ye, H., Lin, Q., Doughty, R., Dong, J., Ma, J., Luo, W., Xie, G., & Cao, J. (2018). Identifying establishment year and pre-conversion land cover of rubber plantations on Hainan Island, China using Landsat data during 1987-2015. Remote Sensing, 10(8). https://doi.org/10.3390/rs10081240

Dong, C., Zhao, G., Meng, Y., Li, B., & Peng, B. (2020). The effect of topographic correction on forest tree species classification accuracy. Remote Sensing, 12(5). https://doi.org/10.3390/rs12050787

Fan, W., Li, J., Liu, Q., Zhang, Q., Yin, G., Li, A., Zeng, Y., Xu, B., Xu, X., Zhou, G., & Du, H. (2018). Topographic correction of forest image data based on the canopy reflectance model for sloping terrains in multiple forward mode. Remote Sensing, 10(5). https://doi.org/10.3390/rs10050717

Gao, M., Gong, H., Zhao, W., Chen, B., Chen, Z., & Shi, M. (2016). An improved topographic correction model based on Minnaert. GIScience and Remote Sensing, 53(2), 247–264. https://doi.org/10.1080/15481603.2015.1118976

Gao, Y., & Zhang, W. (2009a). A simple empirical topographic correction method for ETM + imagery. International Journal of Remote Sensing, 30(9), 2259–2275. https://doi.org/10.1080/01431160802549336

Gao, Y., & Zhang, W. (2009b). LULC classification and topographic correction of Landsat-7 ETM+ Imagery in the Yangjia river Watershed: The influence of DEM resolution. Sensors, 9(3), 1980–1995. https://doi.org/10.3390/s90301980

Hantson, S., & Chuvieco, E. (2011). Evaluation of different topographic correction methods for landsat imagery. International Journal of Applied Earth Observation and Geoinformation, 13(5), 691–700. https://doi.org/10.1016/j.jag.2011.05.001

Kumar, L., & Mutanga, O. (2018a). Geospatial Data Analysis on Google Earth Engine. In Journal of The Remote Sensing Society of Japan (Vol. 38, Issue 2). https://doi.org/10.11440/rssj.38.125

Kumar, L., & Mutanga, O. (2018b). Google Earth Engine applications since inception: Usage, trends, and potential. Remote Sensing, 10(10), 1–15. https://doi.org/10.3390/rs10101509

Law, K. H., & Nichol, J. (2004). Topographic correction for differential illumination effects on ikonos satellite imagery. XXth ISPRS Congress, XXXV Part, 641–646.

Li, M., Im, J., & Beier, C. (2013). Machine learning approaches for forest classification and change analysis using multi-temporal Landsat TM images over Huntington Wildlife Forest. GIScience and Remote Sensing, 50(4), 361–384. https://doi.org/10.1080/15481603.2013.819161

Macander, M. J., Palm, E. C., Frost, G. V, Herriges, J. D., Nelson, P. R., Roland, C., Russell, K. L. M., Suitor, M. J., Bentzen, T. W., Joly, K., Goetz, S. J., & Hebblewhite, M. (2020). Lichen cover mapping for caribou ranges in interior Alaska and Yukon. Environmental Research Letters, 15(5), 055001. https://doi.org/10.1088/1748-9326/ab6d38

Nichol, J., & Hang, L. K. (2013). The Influence of DEM Accuracy on Topographic Correction of Ikonos Satellite Images. Photogrammetric Engineering & Remote Sensing, 74(1), 47–53. https://doi.org/10.14358/pers.74.1.47

Nomura, K., & Mitchard, E. T. A. (2018). More than meets the eye: Using Sentinel-2 to map small plantations in complex forest landscapes. Remote Sensing, 10(11). https://doi.org/10.3390/rs10111693

Nugroho, F. S. (2015). Effect of Number of Spectral Bands , Correlation among Spectral Bands and Number of Object Class to Land Cover Classification Accuracy. Jurnal Ilmiah Geomatika, 21(1), 9–16. https://doi.org/10.24895/JIG.2015.21-1.461

Phillips, S. J., Anderson, R. P., & Schapire, R. E. (2006). Maximum entropy modeling of species geographic distributions. 190, 231–259. https://doi.org/10.1016/j.ecolmodel.2005.03.026

Phiri, D., Morgenroth, J., Xu, C., & Hermosilla, T. (2018). Effects of pre-processing methods on Landsat OLI-8 land cover classification using OBIA and random forests classifier. International Journal of Applied Earth Observation and Geoinformation, 73(April), 170–178. https://doi.org/10.1016/j.jag.2018.06.014

Pimple, U., Sitthi, A., Simonetti, D., Pungkul, S., Leadprathom, K., & Chidthaisong, A. (2017). Topographic correction of Landsat TM-5 and Landsat OLI-8 imagery to improve the performance of forest classification in the mountainous terrain of Northeast Thailand. Sustainability (Switzerland), 9(2), 1–26. https://doi.org/10.3390/su9020258

Riaño, D., Chuvieco, E., Salas, J., & Aguado, I. (2003). Assessment of different topographic corrections in landsat-TM data for mapping vegetation types (2003). IEEE Transactions on Geoscience and Remote Sensing, 41(5 PART 1), 1056–1061. https://doi.org/10.1109/TGRS.2003.811693

Sarzynski, T., Giam, X., Carrasco, L., & Huay Lee, J. S. (2020). Combining radar and optical imagery to map oil palm plantations in Sumatra, Indonesia, using the Google Earth Engine. Remote Sensing, 12(7). https://doi.org/10.3390/rs12071220

Soenen, S. A., Peddle, D. R., & Coburn, C. A. (2005). SCS+C: A modified sun-canopy-sensor topographic correction in forested terrain. IEEE Transactions on Geoscience and Remote Sensing, 43(9), 2148–2159. https://doi.org/10.1109/TGRS.2005.852480

Tsai, Y. H., Stow, D., Chen, H. L., Lewison, R., An, L., & Shi, L. (2018). Mapping vegetation and land use types in Fanjingshan National Nature Reserve using google earth engine. Remote Sensing, 10(6). https://doi.org/10.3390/rs10060927

Vanonckelen, S., Lhermitte, S., Balthazar, V., & Van Rompaey, A. (2014). Performance of atmospheric and topographic correction methods on Landsat imagery in mountain areas. International Journal of Remote Sensing, 35(13), 4952–4972. https://doi.org/10.1080/01431161.2014.933280

Vázquez-Jiménez, R., Romero-Calcerrada, R., Ramos-Bernal, R., Arrogante-Funes, P., & Novillo, C. (2017). Topographic Correction to Landsat Imagery through Slope Classification by Applying the SCS + C Method in Mountainous Forest Areas. ISPRS International Journal of Geo-Information, 6(9), 287. https://doi.org/10.3390/ijgi6090287

Xiong, J., Thenkabail, P. S., Tilton, J. C., Gumma, M. K., Teluguntla, P., Oliphant, A., Congalton, R. G., Yadav, K., & Gorelick, N. (2017). Nominal 30-m cropland extent map of continental Africa by integrating pixel-based and object-based algorithms using Sentinel-2 and Landsat-8 data on google earth engine. Remote Sensing, 9(10), 1–27. https://doi.org/10.3390/rs9101065

Zhang, D. D., & Zhang, L. (2020). Land cover change in the central region of the lower yangtze river based on landsat imagery and the google earth engine: A case study in Nanjing, China. Sensors (Switzerland), 20(7), 1–20. https://doi.org/10.3390/s20072091

Zhou, Y., Wu, L., Weng, F., & Schmidt, H. (2003). A fast algorithm for feature selection in conditional maximum entropy modeling. 153–159. https://doi.org/10.3115/1119355.1119375

Zylshal. (2020). Topographic Correction of LAPAN-A3/LAPAN-IPB Multispectral Image: A Comparison of Five Different Algorithms. Quaestiones Geographicae, 39(3). https://doi.org/https://doi.org/10.2478/quageo-2020-0021

Refbacks

  • There are currently no refbacks.