MODIFIKASI MODEL FOREST CANOPY DENSITY (FCD) PADA CITRA LANDSAT 8 MULTI-TEMPORAL UNTUK MONITORING PERUBAHAN TUTUPAN VEGETASI DI KECAMATAN SUKASADA-BALI

A Sediyo Adi Nugraha, I Putu Ananda Citra

Abstract

Modifikasi model Forest Canopy Density (FCD) bertujuan untuk mengetahui seberapa besar peningkatan akurasi pada model FCD. Perubahan modifikasi model FCD dilakukan secara temporal pada tahun 2014 sampai tahun 2019 di Kecamatan Sukasada. Perubahan dilakukan pada indeks vegetasi dengan Soil Adjusted Vegetation Index (SAVI) dan indeks thermal dengan metode Split-Windows Algorithm (SWA). Modifikasi tersebut perlu dilakukan karena modifikasi model FCD sebelumnya berupa pengurangan penggunaan indikator. Berdasarkan hasil modifikasi model FCD yang dilakukan membuktikan model FCD SAVI memiliki akurasi sebesar 83.67% dan model FCD original sebesar 84%. Sedangkan penggunaan SWA pada model FCD memiliki kondisi konsisten sehingga dapat dinyatakan bahwa SWA mampu menyesuaikan terhadap modifikasi model FCD. Secara temporal (2014 – 2019) menunjukkan perubahan tutupan vegetasi tinggi menjadi tutupan vegetasi sedang sebesar 1115.28 Hektare. Disimpulkan bahwa model FCD SAVI memiliki perbedaan sebesar 0,33% dibandingkan model FCD aslinya. Hal ini dipengaruhi oleh kondisi variasi topografi wilayah yang menyebabkan efek bayangan.

Keywords

FCD; SAVI; SWA; Multi-Temporal

Full Text:

PDF

References

Abdollahnejad, A., Panagiotidis, D., & Surový, P. (2017). Forest canopy density assessment using different approaches - Review. Journal of Forest Science, 63(3), 107–116. https://doi.org/10.17221/110/2016-JFS

Akike, S., & Samanta, S. (2016). Land Use / Land Cover and Forest Canopy Density Monitoring of Wafi-Golpu Project Area , Papua New Guinea. August, 1–14.

Ariyani, R., & B.S., S. H. M. (2016). Transformasi Forest Canopy Density Dan Second Modified Soil Adjusted Vegetation Index Untuk Monitoring Degradasi Hutan Lindung Dan Taman Nasional Di Sarolangun Jambi. Jurnal Bumi Indonesia, 5(3).

Ashaari, F., Kamal, M., & Dirgahayu, D. (2018). Comparison of Model Accuracy in Tree Canopy Density Estimation Using Single Band, Vegetation Indices and Forest Canopy Density (Fcd) Based on Landsat-8 Imagery (Case Study: Peat Swamp Forest in Riau Province). International Journal of Remote Sensing and Earth Sciences (IJReSES), 15(1), 81. https://doi.org/10.30536/j.ijreses.2018.v15.a2845

Azizi, Z., Najafi, A., & Sohrabi, H. (2008). Forest Canopy Density Estimating , Using Satellite Images. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, XXXVII(Part B8), 1127–1130.

Balipost. (2019). Bangun Shortcut 7 hingga 10, Pembebasan Lahan Mulai Dilakukan. Www.Balipost.Com. https://www.balipost.com/news/2019/10/24/90778/Bangun-Shortcut-7-hingga-10,...html

Banerjee, K., Panda, S., Bandyopadhyay, J., & Jain, M. K. (2014). Forest Canopy Density Mapping Using Advance Geospatial Technique. IJISET -International Journal of Innovative Science, Engineering & Technology, 1(7), 358–363. www.ijiset.com

Chandrashekhar, M. B., Saran, S., Raju, P. L. N., & Roy, P. S. (2005). Forest Canopy Density Stratification: How Relevant is Biophysical Spectral Response Modelling Approach? Geocarto International, 20(1), 15–21. https://doi.org/10.1080/10106040508542332

Chavez, J. (1988). Animproved dark-object subtraction technique for atmospheric scattering correction of multispectral data. Remote Sensing of Environment, 24, 159–279.

Deka, J., Tripathi, O. P., & Khan, M. L. (2013). Implementation of Forest Canopy Density Model to Monitor Tropical Deforestation. Journal of the Indian Society of Remote Sensing, 41(2), 469–475. https://doi.org/10.1007/s12524-012-0224-5

Department of the Interior U.S. Geological Survey. (2016). Landsat 8 Data Users Handbook. In Nasa (Vol. 8, Issue June). https://landsat.usgs.gov/documents/Landsat8DataUsersHandbook.pdf

Grainger, A. (1993). Rates of Deforestation in the Humid Tropics: Estimates and Measurements. The Geographical Journal, 159(1), 33–44.

Himayah, S., Hartono, & Danoedoro, P. (2016). The Utilization of Landsat 8 Multitemporal Imagery and Forest Canopy Density (FCD) Model for Forest Reclamation Priority of Natural Disaster Areas at Kelud Mountain, East Java. IOP Conference Series: Earth and Environmental Science, 47(1). https://doi.org/10.1088/1755-1315/47/1/012043

Huete, A. (1988). A soil-adjusted vegetation index (SAVI). Remote Sensing of Environment, 25(3), 295–309. https://doi.org/10.1016/0034-4257(88)90106-X

kumar, A., Singh, A., Kumar, S., & Kanga, S. (2018). Estimating the change in Forest Cover Density and Predicting NDVI for West Singhbhum using Linear Regression. ESSENCE International Journal for Environmental Rehabilitation and Conservation, 9(1), 193–203. https://doi.org/10.31786/09756272.18.9.1.125

Kwon, T., Lee, W., Kwak, D., Park, T., Lee, J. Y., Hong, S. Y., Guishan, C., & Kim, S. R. (2012). Forest Canopy Density Estimation Using Airborne Hyperspectral Data. 대한ì›ê²©íƒì‚¬í•™íšŒì§€, 28(3), 297–305.

Loi, D. T., Chou, T.-Y., & Fang, Y.-M. (2017). Integration of GIS and Remote Sensing for Evaluating Forest Canopy Density Index in Thai Nguyen Province, Vietnam. International Journal of Environmental Science and Development, 8(8), 539–542. https://doi.org/10.18178/ijesd.2017.8.8.1012

Muhammad, A., Prasetyo, L. B., & Kartono, A. P. (2014). Pemetaan Perubahan Forest Canopy Density Di Kph Kuningan. Seminar Nasional Penginderaan Jauh, 2008, 652–661.

Nugraha, A. S.A., Gunawan, T., & Kamal, M. (2019). Comparison of Land Surface Temperature Derived from Landsat 7 ETM+ and Landsat 8 OLI/TIRS for Drought Monitoring. IOP Conference Series: Earth and Environmental Science, 313(1), 0–10. https://doi.org/10.1088/1755-1315/313/1/012041

Nugraha, A Sediyo Adi. (2019). Pemanfaatan Metode Split-Windows Algorithm ( SWA ) pada Landsat 8 Menggunakan Data Uap Air MODIS Terra (The Application of Split-Windows Algorithm (SWA) Methods on Landsat 8 Using Modis Terra Water Vapor). Geomatika, 25(1), 9–16. https://doi.org/http://doi.org/10.24895/JIG.2019.25-1.877

Nugraha, A Sediyo Adi, Gunawan, T., & Kamal, M. (2019). Downscaling land surface temperature on multi-scale image for drought monitoring. Sixth Geoinformation Science Symposium, November, 6. https://doi.org/10.1117/12.2544550

Rikimaru, A. (1999). The Concept of FCD Mapping Model and Semi-Expert System. FCD Mapper User’s Guide. 80.

Rikimaru, A., & Miyatake, S. (2009). Development of forest canopy density mapping and monitoring model using indices of vegetation, bare soil and shadow - Geospatial World. 1–5. http://www.geospatialworld.net/article/development-of-forest-canopy-density-mapping-and-monitoring-model-using-indices-of-vegetation-bare-soil-and-shadow/

Rikimaru, A., Roy, P. S., & Miyatake, S. (2002). Tropical forest cover density mapping. Tropical Ecology, 43(1), 39–47.

Septiani, R., Citra, I. P. A., & Nugraha, A. S. A. (2019). Perbandingan Metode Supervised Classification dan Unsupervised Classification terhadap Penutup Lahan di Kabupaten Buleleng. Jurnal Geografi : Media Informasi Pengembangan Dan Profesi Kegeografian, 16(2), 90–96. https://doi.org/10.15294/jg.v16i2.19777

Skokovic, D., Sobrino, J. a., Jiménez Muñoz, J. C., Soria, G., Julien, Y., Mattar, C., & Cristóbal, J. (2014). Calibration and Validation of land surface temperature for Landsat8- TIRS sensor TIRS LANDSAT-8 CHARACTERISTICS. Land Product Validation and Evolution ESA/ESRIN, 27. https://doi.org/10.1063/1.452862

Sobrino, J. A., El Kharraz, J., & Li, Z. L. (2003). Surface temperature and water vapour retrieval from MODIS data. International Journal of Remote Sensing, 24(24), 5161–5182. https://doi.org/10.1080/0143116031000102502

Sobrino, J. A., Li, Z. L., Stoll, M. P., & Becker, F. (1996). Multi-channel and multi-angle algorithms for estimating sea and land surface temperature with atsr data. International Journal of Remote Sensing, 17(11), 2089–2114. https://doi.org/10.1080/01431169608948760

Sobrino, J., Raissouni, N., & Li, Z.-L. (2001). A Comparative Study of Land Surface Emissivity Retrieval from NOAA Data. In Remote Sensing of Environment (Vol. 75). https://doi.org/10.1016/S0034-4257(00)00171-1

Sobrino, José A., Jiménez-Muñoz, J. C., Sòria, G., Romaguera, M., Guanter, L., Moreno, J., Plaza, A., & Martínez, P. (2008). Land surface emissivity retrieval from different VNIR and TIR sensors. IEEE Transactions on Geoscience and Remote Sensing, 46(2), 316–327. https://doi.org/10.1109/TGRS.2007.904834

Sukarna, R. M. (2008). Aplikasi Model Forest Canopy Density Citra Landsat 7 Etm Untuk Menentukan Indeks Luas Tajuk (Crown Area Index) Dan Kerapatan Tegakan (Stand Density) Hutan Rawa Gambut Di Das Sebangau Provinsi Kalimantan Tengah. Majalah Geografi Indonesia, 22(2), 1–21. https://doi.org/10.22146/mgi.15383

Zhao, S., Qin, Q., Yang, Y., Xiong, Y., & Qiu, G. (2009). Comparison of two split-window methods for retrieving land surface temperature from MODIS data. Journal of Earth System Science, 118(4), 345–353. https://doi.org/10.1007/s12040-009-0027-4

Refbacks

  • There are currently no refbacks.