Alvidita Beatrix Indayani


Knowledge and technological developments are needed to achieve the 14th sustainable development goals (SDGs), namely life below water.One of the developments in remote sensing technology is hyperspectral data for spectrometry analysis using underwater sensors. This study aims to determine the absorption and reflectance features as well as the specific location of the spectral channels of various seagrass leaf conditions. Spectral measurements were carried out on three species of seagrass, namely Cymodocea rotundata (Cr), Thalassia hemprichii (Th), and Enhalus acoroides (Ea) along with the physical conditions attached to seagrass leaves (green, yellow to brown, black, and covered leaves by epiphytic organisms) in shallow sea waters. Spectral measurements using a spectroradiometer equipped with an irradiance hyperspectral radiometer sensor from TriOS-RAMSES, have a spectral range of 320-950 nm and a spectral channel width of 3.3 nm. The measurement process is done with a Field of View (FOV) angle of seven degrees (70). The continuum removal algorithm is used to identify the spectral response features of various seagrass leaf conditions. The results show the location of absorption channels and reflections close together. The location of the absorption feature occurs in the blue channel region (463-493 nm) and the red-red edge channel (671-674 nm). The location of the reflected peaks in the green channel (560-577 nm) and red channel (648 nm) of various seagrass leaf conditions.


sustainable development goals (SDGs); seagrass; hyperspectral radiometer; spectral responses; spektroradiometer; TriOS-RAMSES; continuum removal.

Full Text:



Armstrong, R. A. (1993). Remote sensing of submerged vegetation canopies for biomass estimation. International Journal of Remote Sensing, 14:3(03), 621–627.https://doi.org/10.1080/01431169308904363

Aziizah, N. N. (2016). Analisis Reflektansi Spektral Lamun dari Hasil Pengukuran In-situ Menggunakan Spektrometer dan Citra Satelit WorldView-2 di Pulau Tunda Serang, Banten. Sekolah Pascasarjana Institut Pertanian Bogor. Institut Pertanian Bogor.

Carrère, V. (2003). Mapping microphytobenthos in the intertidal zone of Northern France using high spectral resolution field and airborne data. Université du Littoral Côte d’ Opale, (May), 13–16.

Dekker, A. G., Phinn, S, R., Anstee, J., Bissett, P., Brando, V, E., Casey, B., Fearns, P., Hedley, J., Klonowski, W., et al. (2011). Intercomparison of shallow water bathymetry, hydro-optics, and benthos mapping techniques in Australian and Caribbean coastal environments. Limnol Ocean. Methods 9, 396–425.

Dierssen, H. M. (2014). Overview of Hyperspectral Remote Sensing for Mapping Marine Benthic Habitats from Airborne and Underwater Sensors. Proceedings of SPIE-The International Society for Optical Engineering (Vol. 8870).https://doi.org/10.1117/12.2026529

Kurniasih. (2013). Karakteristik Reflektansi Spektral Lamun di Pulau Panggang, Kepulauan Seribu. Institut Pertanian Bogor.

Mobley, C. D. (1994). Optical Properties of Water, Light and waters: Radiative Transfer in Natural Waters, hal. 60–144.

Mobley, C. D. (1999). Estimation of The Remote-Sensing Reflectance from Above-Surface Measurements. Applied Optics, 38(12), 7442–7455.

Pinnel, N., Heege, T., & Zimmermann, S. (2003). Spectral Discrimination of Submerged Macrophytes in Lakes Using Hyperspectral Remote Sensing Data. In SPIE Proceedings on Ocean Optics XVII (pp. 1–16).

Silva, T. S. F., Costa, M. P. F., Melack, J. M., & Novo, E. M. L. M. (2008). Remote sensing of aquatic vegetation : theory and applications. SPIE Proceedings on Ocean Optics XVII,131–145. https://doi.org/10.1007/s10661-007-9855-3.

Thorhaug, A., Richardson, A. D., & Berlyn, G. P. (2006). Spectral reflectance of Thalassia testudinum (Hydrocharitaceae) seagrass: Low salinity effects. American Journal of Botany, 93(1), 110–117. https://doi.org/10.3732/ajb.93.1.110.

Thorhaug, A., Richardson, A. D., & Berlyn, G. P. (2007). Spectral Reflectance of The Seagrasses: Thalassia testudinum, Halodule wrightii, Syringodium filiforme and Five Marine Algae. International Journal of Remote Sensing, 28 (7)(04), 1487–1501. https://doi.org/10.1080/01431160600954662.

Wicaksono, P. (2017a). Karakterisasi Respon Spektral Spesies Lamun Enhalus acoroides dan Cymodocea rotundata di Pulau Karimunjawa. Majalah Ilmiah Globe, 19(03), 1–10. https://doi.org/10.24895/MIG.2017.19-1.551.

Wicaksono, P., & Kamal, M. (2017). Spectral Response of Healthy and Damaged Leaves of Tropical Seagrass Enhalus acoroides, Thalassia hemprichii, and Cymodocea rotundata. Remote Sensing for Agriculture, Ecosystems, and Hydrology XIX, 10421, 7. https://doi.org/10.1117/12.2278027.


  • There are currently no refbacks.