PENGARUH AKTIVITAS MATAHARI TERHADAP KERAPATAN ATMOSFER ATAS BERDASARKAN DATA POSISI GPS SATELIT LAPAN-A2 (SOLAR ACTVITY INFLUENCE ON THE UPPER ATMOSPHERIC DENSITY DERIVED FROM GPS DATA ON LAPAN-A2 SATELLITE)

Tiar Dani, Rhorom Priyatikanto, Slamet Supriadi, Abdul Rachman, Amrullah A. Qadir

Abstract

Studies on atmospheric density were very important to obtain a correction factor for the atmospheric density model. Thus, improvement of atmospheric models accuracy, i.e. CIRA, JASCHIA, NRLMSISE, became important in its application for re-entry prediction, satellite tracking and mitigation of the collisions probability between active satellites with space debris. GPS equipment installed in LAPAN-A2 indirectly measured the upper atmospheric density variation in-situ from the satellite orbit path. Notwithstanding the measurement had a lower temporal resolution than using accelerometer, but still gives better resolution than using Two-Line Element (TLE) data. This study had successfully determined upper atmospheric density variation with a 10 second resolution using LAPAN-A2 GPS data. The LAPAN-A2 GPS data validated using In-track Radial Cross-track (RIC) had ± 2 km error compared to the TLE data. It was also found that there was influence of solar activity on atmospheric density changes obtained from the LAPAN-A2 GPS data.

 

Abstrak

Studi kerapatan atmosfer atas sangat penting untuk memperoleh faktor koreksi dari suatu model kerapatan atmosfer. Peningkatan akurasi dari model atmosfer yang telah ada (CIRA, JASCHIA, NRLMSISE) sangat penting dalam penerapannya untuk prediksi re-entry, penjejakan satelit dan prakiraan kemungkinan terjadinya tabrakan antara satelit aktif dengan sampah antariksa. Peralatan GPS yang terpasang di satelit LAPAN-A2 secara tidak langsung dapat melakukan pengukuran in-situ perubahan kerapatan atmosfer atas dari orbit yang dilaluinya, meskipun tingkat resolusi temporalnya masih lebih rendah dibandingkan menggunakan instrumen akselerometer tetapi masih jauh lebih baik dibandingkan menggunakan data Two-Line Element (TLE). Studi ini telah berhasil memperoleh variasi kerapatan atmosfer atas dengan resolusi 10 detik menggunakan data posisi GPS LAPAN-A2. Selain itu, diperoleh pula tingkat kesalahan dalam koordinat satelit (Radial Intrack Crosstrack - RIC) data TLE terhadap data posisi GPS LAPAN-A2 sebesar ± 2 km. Selain itu terlihat pula pengaruh aktivitas matahari terhadap perubahan kerapatan atmosfer atas yang diperoleh dari data posisi GPS LAPAN-A2

Keywords

upper atmospheric density; GPS LAPAN-A2; solar activities; Two-Line Element (TLE);kerapatan atmosfer atas;aktivitas matahari

Full Text:

PDF

References

Dani, T. dan A. Rachman, 2013. Pengaruh Radiasi EUV Matahari dan Badai Geomagnet Terhadap Variasi Kerapatan Atmosfer dari Elemen Orbit LAPAN- Tubsat, Jurnal Sains Dirgantara, 10, 70-81.

Dani, T., dan Neflia, 2014. Comparison Between TLE Derived Density from LAPAN-Tubsat and Razaksat Satellite Orbital Element and the NRLMSISE-00 Density Model, Proceeding of International Workshop on Space Weather in Indonesia, 6-11.

Dani, T., 2013. Pengaruh Aktivitas Matahari Siklus Ke-23 yang Berdampak pada Perubahan Kerapatan Atmosfer dari Analisis Elemen Orbit Satelit LEO, Master Tesis, Program Studi Astronomi, Institut Teknologi Bandung.

Delgado, M.R., 2008. Atmospheric Drag: Modeling the Space Environment. Technical report, Universidad Politecnica de Madrid, E.T. S.I. Aeronauticos.

Doornbos, E., 2011. Thermospheric Density and Wind Determination from Satellite Dynamics, Ph.D. thesis, TU Delft, School of Aerospace Engineering.

Hardhienata, S., R. H. Triharjanto, dan M., Mukhayadi, 2011. LAPAN-A2: Indonesian Near-Equatorial Surveillance Satellite, APRSAF-18 (Asia-Pacific Regional Space Agency Forum) Singapore.

Houssou, S., 2006. GPS Receiver Type VGPS-51: Interface Control Documen & Operation Manuals, Vectronic Aerospace.

Kahr, E., S. Skone, and K., O'Keefe, 2010. Orbit Determination for the Canx-2 Nanosatellite Using Intermittent GPS Data, Proceedings of ION GNSS, The Institute of Navigation, Portland, Oregon.

King-Hele, D., 1987. Satellite Orbits in an Atmosphere: Theory and Applications. 1st ed. London: Blackie and Son Ltd.

Lechtenberg, T. F., 2010. Derivation and Observability of Upper Atmospheric Density Variations utilizing precision orbit ephemerides, Master’s thesis, University of Kansas, School of Aerospace Engineering.

Picone, J. M., J. T., Emmert, and J. L., Lean, 2005. Thermospheric Densities Derived from Spacecraft Orbits: Accurate Processing of two Line Element, Journal of Geophysical Research, 110, A03301.

Vallado, D. A, 2001. Fundamentals of Astrodynamics and Applications, 2 ed., Microcosm Press.

Vallado, D. A, P., Crawford, R., Hujsak, and T., Kelso, 2006. Revisiting Spacetrack Report #3, AIAA/AAS Astrodynamics Specialist Conference, AIAA/AAS, Keystone, CO.

Van den Ijssel, J.A.A, 2014. GPS-Based Precise Orbit Determination and Accelerometry for Low Flying Satelllites, Dissertation, faculteit Luchtvaarten Ruimtevaarttechniek, Technische Universiteit Delft.

Young, J. L., 2001. Determination of Atmospheric Density in Low-Earth Orbit using GPS Data, Trident Scholar Project Report, US Naval Academy, no. 287.

Refbacks

  • There are currently no refbacks.