ANALISIS KONDISI FLUKS ELEKTRON DI SABUK RADIASI ELEKTRON LUAR BERDASARKAN MEDAN MAGNET ANTARPLANET (BZ) DAN KECEPATAN ANGIN MATAHARI (ANALYSIS OF ELECTRON FLUX CONDITION IN OUTER ELECTRON RADIATION BELT BASED ON INTERPLANETARY MAGNETIC FIELD (BZ) AND SOL

Siska Filawati

Abstract

Interplanetary space is a hazard precursor for solar eruption toward earth. The solar eruptions enhance electron flux that can lead to anomalies, shifts, and permanent damage to spacecraft, e.g. satellites. The data used in this paper are interplanetary space data represented by interplanetary magnetic field (Bz) and solar wind speed, as well as Dst and AE indexes as comparison indicating disturbance has reached Earth’s poles and equator during 2011-2012. The method used is to determine the value of maximum and minimum Bz in the year 2011-2012 which is taken five days before and after. Analysis and calculation of correlation is done to data of Bz-electron flux and solar wind velocity-electron flux. Clarification of disturbence in interplanetary space and outer electron radiation belt is using index data Dst and AE indexes are used to clarify interplanetary space and outer electron radiation belt disturbances. The aim of this study is to determine the characteristics of interplanetary space that can increase the electron flux so that the space weather early warning can be done. It was found that the period of electron flux enhancement after decrease and increase of Bz was 2 to 3 days. The electron flux would enhance when interplanetary space was in its normal condition at solar wind speed 500 km/sec and Bz is -5 nT to +5 nT. Electron flux correlation with solar wind velocity was better than with Bz.

 

ABSTRAK

Kondisi ruang antarplanet merupakan prekursor bahaya erupsi matahari terhadap bumi. Erupsi matahari dapat menyebabkan peningkatan fluks elektron. Tingginya fluks elektron dapat menyebabkan anomali, pergeseran, dan kerusakan permanen pada wahana antariksa, misal satelit. Data yang digunakan pada makalah ini adalah data ruang antarplanet yang diwakili oleh kondisi medan magnet antarplanet (Bz) dan kecepatan angin matahari yang merupakan prekursor peningkatan fluks elektron serta data indeks Dst dan indeks AE sebagai pembanding bahwa gangguan telah mencapai kutub dan ekuator bumi selama rentang waktu 2011-2012. Metode yang digunakan adalah menentukan nilai Bz maksimum dan minimum dalam tahun 2011-2012 yang selanjutnya dari penanggalan data tersebut diambil data lima hari sebelum dan sesudah. Analisis dan perhitungan korelasi dilakukan terhadap data Bz-fluks elektron dan kecepatan angin matahari-fluks elektron. Klarifikasi gangguan yang terjadi di ruang antarplanet dan sabuk radiasi elektron luar menggunakan data indeks Dst dan indeks AE. Tujuan ditulisnya makalah ini adalah untuk mengetahui karakteristik kondisi ruang antarplanet yang dapat meningkatkan fluks elektron agar peringatan dini cuaca antariksa dapat dilakukan. Hasil yang didapatkan adalah waktu yang dibutuhkan fluks elektron setelah terjadi penurunan dan peningkatan Bz adalah 2 hingga 3 hari, fluks elektron akan meningkat saat kondisi ruang antarplanet normal yaitu pada kecepatan 500 km/detik dan Bz -5 nT hingga +5 nT, korelasi fluks elektron dengan kecepatan angin matahari lebih baik dibanding fluks elektron dengan Bz.

Keywords

Ruang antarplanet; fluks elektron; medan magnet antar-planet (Bz); fluks elektron; kecepatan angin matahari; indeks Dst; indeks AE; interplanetary space; electron flux; interplanetary magnetic field (Bz); solar wind speed; Dst index; AE index

Full Text:

PDF

References

Allen, J. H., 2002. Historical and Recent Solar Activity and Geomagnetic Storms Affecting Spacecraft Operations. Government Microcircuit and Applications Conference, Monterey, California.

Baker, D. N., R. D. Belian, P. R. Higbie, R. W. Klebesadel, and J. B. Blake, 1987. Deep Dielectric Charging Effects due to High-Energy Electrons in Earth’s Outer Magnetosphere, Journal of Electrostatics, 20 (1): 3–19.

Blake, J. B., D. N. Baker, N. Turner, K. W. Ogilive, and R. P. Lepping, 1997. Correlation of Changes in the Outer-zone Relativistic-electron Population with Upstream Solar Wind and Magnetic Field Measurements, Geophysics Research Letter, 24, 927-929.

Filawati, S., dan F. Nuraeni, 2017. Pengaruh CIR dan CME Terhadap Fluks Elektron Sepanjang Tahun 2011, Prosiding Seminar Nasional Sains Antariksa. Bandung, 22 November 2016.

Hajra, R., E. Echer, B. T. Tsurutani, and W. D. Gonzalez, 2013. Solar Cycle Dependence of High-Intensity Long-Duration Continuous AE Activity (HILDCAA) events, relativistic electron predictors?, Journal of Geophysical Research: Space Physics, Vol118.

Hajra, R., B. T. Tsurutani, E. Echer, and W. D. Gonzalez, 2014. Relativistic Electron Acceleration during High-Intensity, Long-Duration, Continuous AE Activity (HILDCAA) Events:Solar Cycle Phase Dependences, Geophysical Research Letters, 41 (6): 1876–81.

Heber, B., T. R. Sanderson, and M. Zhang, 1999. Corotating Interaction Regions, Advances in Space Research, 23 (3): 567–79.

Iles, R., A. N. Fazakerley, A. D. Johnstone, N. P. Meredith, and P. Buhler, 2002. The Relativistic Electron Response in the Outer Radiation Belt during Magnetic Storms, Annales Geophysicae, no. March 2002: 957–65.

Kataoka, R., and Y. Miyoshi, 2006. Flux Enhancement of Radiation Belt Electrons during Geomagnetic Storms Driven by Coronal Mass Ejections and Corotating Interaction Regions, Space Weather 4 (9):1542-7390.

Kim, R. S., K. S. Cho, K. H. Kim, Y. D. Park, Y. J. Moon, Y. Yi, J. Lee, H. Wang, H. Song, and M. Dryer, 2008. CME Earthward Direction as an Important Geoeffectiveness Indicator, The Astrophysical Journal, 677 (2): 1378–84.

Li, X., and M. A. Temerin, 2001. The Electron Radiation Belt, Space Science Reviews, Volume 95, 1–2, 569–580.

Miyoshi, Y., A. Morioka, R. Kataoka, Y. Kasahara, and T. Mukai, 2007. Evolution of the Outer Radiation Belt during the November 1993 Storms Driven by Corotating Interaction Regions, Journal of Geophysical Research: Space Physics, 112 (5).

Miyoshi, Y., and R. Kataoka, 2008. Flux Enhancement of the Outer Radiation Belt Electrons after the Arrival of Stream Interaction Regions, Journal of Geophysical Research: Space Physics, Vol. 113.

O’Brien, T. P., R. L. McPherron, D. Sornette, G. D. Reeves, R. Friedel, and H. J. Singer, 2001. Which Magnetic Storms Produce Relativistic Electrons at Geosynchronous Orbit?, Journal of Geophysical Research: Space Physics, 106 (A8): 15533–44.

Paulikas, G. A., and J. B. Blake, 1979. Effects of the Solar Wind on Magnetospheric Dynamics: Energetic Electrons at the Synchronous Orbit, Geophys. Monogr. Ser. 21: 180–202.

Weigel, R. S., A. J. Klimans, and D. Vassiliadis, 2003. Precursor Analysis and Prediction of Large-amplitude Relativistic Electron Fluxes, Space Weather Journal (3). 1014.

Zell, H., 2017. Earth's Magnetosphere and Plasmasheet, diakses https://www. nasa.gov/mission_pages/sunearth/science/magnetosphere2.html, Agustus 2017.

Refbacks

  • There are currently no refbacks.