EVALUASI KINETIKA DEKOMPOSISI TERMAL PROPELAN KOMPOSIT AP/HTPB DENGAN METODE KISSINGER, FLYNN WALL OZAWA DAN COATS - REDFREN

Wiwiek Utami Dewi

Abstract

Decomposition of propellant Mechanism and kinetics have been investigated by using DTG/TA with three different methods: Kissinger, Flynn Wall Ozawa and Coats & Redfern. This research aims to determine decomposition kinetic parameters of LAPAN’s propellant. The propellants have different composition of Al and AP modal. RUM propellant consist of AP/HTPB. 450 propellant consists AP/HTPB/Al (bimodal). Meanwhile 1220 propellant consists of AP/HTPB/Al (trimoda). Thermal analysis takes place at 30 – 400oC and nitrogen atmosphere flow rate is 50 ml/min. The result according showed that propellant was decomposed by F1 mechanism (random nucleation with one nucleus on the individual particles). Activation energy of propellants are in range between 100.876 – 155.156 kJ/mol meanwhile pre-exponential factor are in range between 4.57 x 107 – 3.46 x 1012/min. Activation energy (E) as well as pre-exponential factor for 1220 propellant is the lowest among the others. AP trimodal application generates catalytic effect which decreases activation energy. 1220 propellant is easier to decompose (easier to react) than RUM and 450 propellant.

 

Abstrak

Mekanisme dan kinetika dekomposisi propelan telah diinvestigasi menggunakan DTG/TA dengan tiga jenis metode yang berbeda yaitu Kissinger, Flynn Wall Ozawa dan Coats & Redfern. Penelitian ini bertujuan untuk mengetahui parameter kinetika dekomposisi propelan LAPAN. Propelan yang digunakan memiliki perbedaan komposisi Al dan jenis moda AP. Propelan RUM adalah propelan AP/HTPB. RX 450 adalah AP/HTPB/ Al (bimoda). Sementara itu, RX 1220 adalah AP/HTPB/ Al (trimoda). Pengujian termal berlangsung pada suhu 30 - 400oC dan atmosfer nitrogen berlaju alir 50 ml/menit. Hasil penelitian mengungkapkan bahwa semua jenis propelan terdekomposisi dengan mekanisme F1 (nukleasi acak dengan satu nukleus pada partikel individu). Energi aktivasi propelan berkisar antara 100,876 – 155,156 kJ/mol sementara faktor pre-eksponensial berkisar antara 4,57 x 107 – 3,46 x 1012/min. Energi aktivasi (E) dan faktor pre-eksponensial (A) RX 1220 adalah terendah dari ketiga sampel. Penggunaan jenis AP trimodul menciptakan efek katalitik yang menurunkan besarnya energi aktivasi. Propelan RX 1220 lebih mudah terdekomposisi (lebih mudah bereaksi) daripada propelan RUM dan RX 450. 

Keywords

Decomposition; Propellants; DTA; TGA; DTG; dekomposisi; propelan

Full Text:

PDF

References

Aboulkas, A and Harfi, K. EL., 2008. Study of Kinetics and Mechanism of Thermal Decomposition of Moraccan Tarfaya Oil Shale and It’s Kerogen, Oil Shale, Vol 2, No.4 : 426 – 443.

Babar, Zaheer Ud-ddin and Abdul Qadeer Malik, 2014. Thermal Decomposition and Kinetic Evaluation of Composite Propellant Material Catalyzed with Nano Magnesium Oxide, NUST Journal of Engineering Science, Vol 7 No 1 : 5 – 14.

Bawase, M.A; Khandaskar, H.L; Kenjale, V.G; Saraf, M.R., 2012. Application of Thermo-Gravimetric Analysis as a Laboratory Tool for Prediction of Relative Life of Polymers, AdMet Paper No. CM 002 : 1 - 6.

Blaine, George, 2015. Practical Aspects of Kinetics Determination by Thermal Analysis. TAWebinar by TA Instruments, https://www.youtube. com/watch?v=ofsy6Ggj4PY, diakses pada 28 Oktober 2016.

Cai, Weidong; Thakre, Piyus; and Yang, Vigor, 2008. A Model of AP/HTPB Composite Propellant Combustionin Rocket Motor Environment, Combustion Science and Technology, 180 : 2143 – 2169.

Chen, J.K and Brill, T.B., 1991. Chemistry and Kinetics of Hydroxyl-terminated Polybutadiene (HTPB) and Diisocyanate– HTPB Ploymers During Slow Decomposition and Combustion-like Conditions, Combustion and Flame, 87 : 217 – 232.

Dewi, Wiwiek Utami dan Yulia Azatil Ismah, 2016. Dekomposisi Termal Propelan Komposit Berbasis Amonium Perklorat / Hydroxy Terminated Polybutadiene, Jurnal Teknologi Dirgantara, Vol 14, No. 1 : 17 – 24.

Fuente, Jose Luis, 2009. An Analysis of The Thermal Aging Behaviour in High Performance Energetic Composites Through The Glass Transition Temperatur, Polymer Degradation and Stability, 94 : 664 – 669.

Goncalves, R.F.B.; Rocco, J.A.F.F dan Iha, K., 2013. Thermal Decomposition Kinetics of Aged Solid Propellant Based on Ammonium Perchlorate – AP/HTPB Binder. 325 – 342 pp In Elkordy, Amal Ali (Ed). Applications of Calorimetry in a Wide Context - Differential Scanning Calorimetry, Isothermal Titration Calorimetry and Microcalorimetry. InTech, Vienna.

Kakumanu, Lalith V; Yadav, Narendra; Karmakar, Srinibas, 2014. Combustion Study of Composite Solid Propellants Containing Metal Phthalocyanines, International Journal of Aerospace Science, 3 (2) : 21 – 36.

Leili, Liu; Fengsheng, Li; Linghua, Tan; Min, Li dan Yi, Yang, 2004. Effects of Metal and Composite Metal Nanopowders on The Thermal Decomposition of Ammonium Perchlorate (AP) and The Ammonium Perchlorate/ Hydroxyterminated Polybutadiene (AP/HTPB) Composite Solid Propellant, Chinese J. Chem. Eng., 12 (4) : 595 – 598.

Majda, Dorota; Korobov, Alexander; Fileks, Urszula; Midgley, Paul; dkk, 2008. Low- Temperature Thermal Decomposition of Large Single Crystals of Ammonium Perchlorate, Chemical Physical Letters, 454 : 233 – 236.

Mullen, J. Christine, 2010. Composite Propellant Combustion With Low Aluminum Agglomeration, Disertasi Doktoral University of Illnois. Illinois. 203 hlmn.

Pilawka, Ryszard dan Maka, Honorata, 2014. Kinetics of Thermal Decomposition of Isocyanate-Epoxymaterials Crosslinked in The Presence of 1-ethylimidazole Accelerator. http://en.www.ichp.pl/ attach.php?id=2424 diunduh: 14 Agustus 2015

Sengupta, Rajatendu; S. Sabharwal; Anil K; Bhowmick, Tapan K; dan Chaki, 2006. Thermogravimetric Studies on Polyamide-6,6 Modified by Electron Beam Irradiation and by Nanofillers, Polymer Degradation and Stability, 91 : 1311 – 1318.

Sinditskii, Valery P dan Egorsev, Viacheslav Yu, 2010. Combustion Mechanism and Kinetic of Thermal Decomposition of Amonium Chlorate and Nitrite, Central European Jurnal of Energetic Material, 7 (1) : 61 – 75.

Vargeese, Anuj A, 2016. A Kinetics Investigation on The Mechanism and Activity of Copper Oxide Nanorods on The Thermal Decomposition of Propellants, Combustion and Flame, 163 : 354 – 360.

Vasconcelos, Gubran da Cuncha, Rogerio Lago Mazur, Bruno Ribeiro, Edson Coccieri Botelho, dan Michelle Leali Costa, 2014. Evaluation of Decomposition Kinetics of Poly (Ether-Ether-Ketone) by Thermogravimetric Analysis, Materials Research, 17 (1) : 227 – 235.

Waesche, R.H.W., dan J. Wenograd, 2000. Calculation of Solid-Propellant Burning Rates from Condensed-Phase Decomposition Kinetics, Combustion, Explosion and Shock Waves, Vol 36 (1) : 125 – 134.

Wang, Xiu-Li, Ke-Ke Yang, Yu-Zhong Wang, Bo Wu, Ya Liu, Bing Yang, 2003. Thermogravimetric Analysis of The Decomposition of Poly(1,4-dioxan-2-one)/ Strach Blends, Polymer Degradation and Stability, 81 : 415 – 421.

Refbacks

  • There are currently no refbacks.