REVIEW VISUALISASI SCHLIEREN PADA TEROWONGAN ANGIN SUPERSONIK

Jefri Abner Hamonangan

Abstract

Terowongan angin merupakan sebuah fasilitas yang mensimulasikan aliran udara dengan berbagai variasi kecepatan pada sebuah benda. Peneliti dan perekayasa menggunakan terowngan angin untuk mengamati dan mengevaluasi perilaku sebuah benda pada kecepatan udara tertentu. Terdapat 2 metode dalam proses pengamatan perilaku benda pada pengujian terowongan angin, yaitu dengan menggunakan balance dan visualisasi dengan menggunakan schlieren.

Keywords

Visualisasi; Schlieren; Terowongan Angin; Supersonik

Full Text:

PDF

References

- Amann, J. (Producer). (2007, 26/07/2018). McDonnell Douglas F/A-

A Hornet Shockwave. Retrieved from

http://www.airliners.net/photo/USA-Navy/McDonnell-Douglas-F-A-

A-Hornet/1286859/L

- Bachmann, A. M., Martyanov, M., Moody, J., Pukhov, A., & Muggli, P.

(2017). Schlieren imaging for the determination of the radius of an

excited rubidium column. Nuclear Instruments and Methods in

Physics Research Section A: Accelerators, Spectrometers, Detectors

and Associated Equipment. doi:

https://doi.org/10.1016/j.nima.2017.12.062

- Balachandran, P. (2006). Fundamentals of Compressible Fluid

Dynamics: PHI Learning.

- Chaloupka, J. L., Woods, M., Aas, J., Hutchins, J., & Thistle, J. D.

(2014). Color schlieren imaging with a two-path, double knife edge

system. Optics Express, 22(7), 8041-8046. doi:

1364/OE.22.008041

- Cristofolini, A., Neretti, G., Roveda, F., & Borghi, C. (2012). Schlieren

imaging in a dielectric barrier discharge actuator for airflow control.

Journal of Applied Physics, 111. doi: 10.1063/1.3682488

- Hargather, M. J., & Settles, G. S. (2012). A comparison of three

quantitative schlieren techniques. Optics and Lasers in Engineering,

(1), 8-17. doi: 10.1016/j.optlaseng.2011.05.012

- Ilić, B., Miloš, M., Milosavljević, M., & Isaković, J. (2016). Model-

based stagnation pressure control in a supersonic wind tunnel. FME

Transaction, 44(1), 1-9. doi: 10.5937/fmet1601001I

- Ilić, B., Milosavljević, M., Isaković, J., & Miloš, M. (2016). Stagnation

Pressure Transient Control in a Supersonic Blowdown Wind Tunnel

Test Facility. Materials Today: Proceedings, 3(4), 987-992. doi:

https://doi.org/10.1016/j.matpr.2016.03.034

- Krause, E. (2005). Fluid Mechanics: With Problems and Solutions,

and an Aerodynamics Laboratory: Springer.

- Krehl, P. O. K. (2009). History of Shock Waves, Explosions and

Impact: Springer-Verlag Berlin Heidelberg.

- Mayinger, F. (2014). Optical Measurements: Techniques and

Applications: Springer Berlin Heidelberg.

- Mier, F. A., & Hargather, M. J. (2016). Color gradient background-

oriented schlieren imaging. Experiments in Fluids, 57(6), 95. doi:

1007/s00348-016-2183-z

- Nazarian Shahrbabaki, A., Bazazzadeh, M., Dehghan Manshadi, M., &

Shahriari, A. (2014). Intelligent Controller Design for a Blowdown

Supersonic Wind Tunnel. International Journal of Control and

Automation, 7, 409-426. doi: 10.14257/ijca.2014.7.1.37

- Panigrahi, P. K., & Muralidhar, K. (2012). Rainbow Schlieren

Schlieren and Shadowgraph Methods in Heat and Mass Transfer (pp.

-61). New York, NY: Springer New York.

- Settles, G. S. (2001). Schlieren and Shadowgraph Techniques:

Visualizing Phenomena in Transparent Media: Springer Berlin

Heidelberg.

- Steinhauser, M. O. (2018). Multiscale Modeling and Simulation of

Shock Wave-Induced Failure in Materials Science: Springer

Fachmedien Wiesbaden.

- Ting, C.-C., & Chen, C.-C. (2013). Detection of gas leakage using

microcolor schlieren technique. Measurement, 46(8), 2467-2472. doi:

1016/j.measurement.2013.04.073

Refbacks

  • There are currently no refbacks.