Effect of Isomer Composition of Hydroxy Terminated Polybutadiene (HTPB) in Low Shear Flow Behavior (Efek dari Komposisi Isomer dari Hydroxy Terminated Polybutadiene (HTPB) terhadap Sifat Alir dalam Geseran Rendah)

Afni Restasari, Luthfia Hajar Abdillah, Retno Ardianingsih, Rika Suwana Budi


HTPB is the ultimate component of matrix builder for high-filled composite materials. Flow behavior of HTPB in low shear is crucial in casting the composite. Considering the characteristics of hydrocarbon, this work aims to investigate the effect of microstructure composition of HTPB on its flow behavior. In this work, HTPB with different composition of 1,4-cis, 1,2-vinyl and 1,4-trans microstructures were used. Fourier-Transform Infra-Red spectroscopy (FT-IR) was used to determine the composition. It was calculated as a ratio of peak area of 710, 910 and 970 cm-1 for 1,4-cis, 1,2-vinyl, 1,4-trans isomers respectively. Viscosity was measured using a rotational viscometer at various low shear rates. It is found that HTPB with high 1,2-vinyl/1,4-trans isomers shows shear thickening behaviour, distinguished significantly from Newtonian flow of the others. It is suggested that mechanism of shear thickening involves a certain configuration of 1,2-vinyl and 1,4-trans isomers that builds different degrees of flow resistance from one to other shear layers. The configuration and flow resistance changes among layers as shear increases.


Microstructure, Viscosity, Hydroxy Terminated Polybutadiene, Flow behaviour, Shear thickening

Full Text:



Abdillah, L. A., Restasari, A., Hartaya, K., & Budiman, Y. (2020). The Selection of Composite Solid Propellant Process Condition Based on Flow Characteristics of Propellant Slurry The Selection of Composite Solid Propellant Process Condition Based on Flow Characteristics of Propellant. AIP Conference Proceedings 2226, 040010. https://doi.org/10.1063/5.0002342

Adewale, F. J., Lucky, A. P., Oluwabunmi, A. P., & Boluwaji, E. F. (2017). Selecting the Most Appropriate Model for Rheological Characterization of Synthetic Based Drilling Mud. International Journal of Applied Engineering Research, 12(18), 7614–7629.

Ardianingsih, R., & Kumoro, A. C. (2019). Analisis Viskositas Slurry Propelan Untuk Akurasi Karakterisasi Rheologi Berbasis Perekat Hidroxy Terminated Polybutadiene Dengan Plasticizer Dioctyl Adipate. Teknik, 40(3), 154. https://doi.org/10.14710/teknik.v40i3.27209

Berret, J.-F., Séréro, Y., Winkelman, B., Calvet, D., Collet, A., & Viguier, M. (2001). Nonlinear Rheology of Telechelic Polymer Networks. Journal of Rheology, 45(2), 477–492. https://doi.org/10.1122/1.1339245

Dey, A., Athar, J., Sikder, A. K., & Chattopadhyay, S. (2015). Effect of Microstructure on HTPB Based Polyurethane (HTPB-PU). Journal of Materials Science and Engineering B, 5(3–4), 145–151. https://doi.org/10.17265/2161-6221/2015.3-4.005

Dey, A., Sikder, A. K., & Athar, J. (2017). Micro-structural Effect on Hydroxy Terminated Poly Butadiene ( HTPB ) Prepolymer and HTPB Based Composite Propellant. Journal of Molecular Nanotechnology and Nanomedicine, 1(1), 104.

Dombe, G., Jain, M., Singh, P. P., Radhakrishnan, K. K., & Bhattacharya, B. (2008). Pressure Casting of Composite Propellant. Indian Journal of Chemical Technology, 15, 420–423.

Dunstan, D. E. (2019). The Viscosity-Radius Relationship for Concentrated Polymer Solutions. Scientific Reports, 9(543), 1–9. https://doi.org/10.1038/s41598-018-36596-6

Ferry, J. D. (1980). Viscoelastic Properties of Polymers (3rd ed.). Canada: John Willey and Sons Ltd.

Goh, E. G., & Wan Nik, W. B. (2018). A Generalized Model for Viscosity as a Function of Shear Rate. ARPN Journal of Engineering and Applied Sciences, 13(9), 3219–3223.

Golofit, T., Ganczyk-Specjalska, K., Jamroga, K., & Kufel, L. (2018). Rheological and Thermal Properties of Mixtures of Hydroxyl-Terminated Polybutadiene and Plasticizer (Rapid communication). Polimery, 63(1), 53–63. https://doi.org/10.14314/polimery.2018.1.9

Green, P. (2004). Shear Viscosity , Rheology. European Coating Journal, (05), 48.

Hartaya, K., Budiman, Y., Restasari, A., Budi, R. S., Rohman, F., Wicaksono, B., … Prayoga, R. D. (2017). Analisis Komposisi Propelan Padat 320 Secara Komparasi, Prediksi, Uji Homogenitas dan Upaya Penyempurnaan. In R. A. Agustina & A. Marta (Eds.), SIPTEKGAN XXI (pp. 323–330). Tangerang: Pusat Teknologi Penerbangan, LAPAN.

Jeong, S. (2019). Shear Rate-Dependent Rheological Properties of Mine Tailings: Determination of Dynamic and Static Yield Stresses. Applied Sciences, 9(4744). https://doi.org/10.3390/app9224744

Kida, T., Hamasaki, K., Hiejima, Y., Maeda, S., & Nitta, K. (2020). Microscopic Origin of Elastic and Plastic Deformation in Poly ( Ether-Block-Amide ) Elastomers under Various Conditions. Nihon Reoroji Gakkaishi, 48(3), 153–160. https://doi.org/10.1678/rheology.48.153

Li, K., & Matsuba, G. (2017). Effects of Relaxation Time and Zero Shear Viscosity on Structural Evolution of Linear Low-density Polyethylene in Shear Flow. Journal of Applied Polymer Science, 1–9. https://doi.org/10.1002/app.46053

Li, P., Liu, K., Fu, Z., Yu, Y., Wang, Z., & Hua, J. (2019). Preparation of butadiene-isoprene copolymer with high vinyl contents by Al(OPhCH3)(i-Bu)2/MoO2Cl2.TNPP. Polymers, 11(3). https://doi.org/10.3390/polym11030527

Malvern Instruments Worldwide. (2016). Malvern Instruments White Paper - A Basic Introduction to Rheology Shear Flow. 1–20. Retrieved from https://www.malvernpanalytical.com/en/learn/knowledge-center/whitepapers/WP160620BasicIntroRheology.html

Manu, S. K. (2009). Glycidyl Azide Polymer (GAP) as a High Energy Polymeric Binder for Composite Solid Propellant Applications. Mahatma Gandhi University.

Onogi, S. (1982). Rheology for Chemist. Kyoto: Kagaku Doujin co. ltd.

Prine, N. (2018). Characterization and Selection of Hydroxyl- Terminated Polybutadiene Polymers for High- Strain Applications by. University of Southern Mississippi.

Remakanthan, S., Kk, M., Gunasekaran, R., Thomas, C., & Thomas, C. R. (2015). Analysis of Defects In Solid Rocket Motors Using X-Ray Radiography. The E-Journal of Nondestructive Testing, 20(6).

Restasari, A., Budi, R. S., & Hartaya, K. (2018). Pseudoplasticity of Propellant Slurry with Varied Aluminium Content for Castability Development. Journal of Physics: Conference Series, 1005(1). https://doi.org/10.1088/1742-6596/1005/1/012034

Restasari, Afni, Ardianingsih, R., & Abdillah, L. H. (2015). The Effects of Hidroxy Terminated Polybutadiene (HTPB)`s Mass on The Magnitude of Vinyl`s Effects in Increasing Composite Solid Propellant Binder`s Rate of Increasing of Viscosity and Hardness. Jurnal Teknologi Dirgantara, 13(1), 61–70.

Rosita, G. (2016). Perubahan Karakteristik Pembentukan Poliuretan Berbasis HTPB dan TDI Berdasarkan Komposisi Reaksi. Jurnal Teknologi Dirgantara, 14(2), 159–170.

Sone, T. (2016). Industrial synthetic method of the rubbers. 1. Butadiene rubber. Int. Polym. Sci. Tech, 43, 49–54.

Sridhar, S. L., & Vernerey, F. J. (2018). The Chain Distribution Tensor: Linking Nonlinear Rheology and Chain Anisotropy in Transient Polymers. Polymers, 10(8), 1–17. https://doi.org/10.3390/polym10080848

Wibowo, H. B. (2015). Pengaruh Gugus Hidroksil Sekunder Terhadap Sifat Mekanik Poliuretan Berbasis HTPB (Hydroxy Terminated Polybutadiene). Jurnal Teknologi Dirgantara, 13(2), 103–112.

Wibowo, H. B., Dharmawan, W. C., Ratih, S., & Murti, S. (2020). Rapid Analysis of HTPB (Hydroxyl Terminated Polybutadiene) Properties with Infrared Spectroscopy and Gel Chromatography. AIP Conference Proceedings 2226, 040012(April).

Wibowo, H. B., Dharmawan, W. C., Wibowo, R. S. M., & Yulianto, A. (2019). Kinetic Study of HTPB (Hydroxy Terminated Polybutadiene) Synthesis Using Infrared Spectroscopy. Indonesian Journal of Chemistry. https://doi.org/10.22146/ijc.49863

Zhang, Q., Shu, Y., Liu, N., Lu, X., Shu, Y., Wang, X., … Xu, M. (2019). Hydroxyl Terminated Polybutadiene: Chemical Modification and Application of These Modifiers in Propellants and Explosives. Central European Journal of Energetic Materials, 16(2), 153–193. https://doi.org/10.22211/cejem/109806


  • There are currently no refbacks.