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Abstract 
This paper shows a study on an alternative method for classification of polarimelrioSAR data. 

The method is designed by integrating the combined features extracted from two scattering models 
(i.e.. Freeman decomposition model and Cloudc decomposition model) and lextural analysis with 
distribution-free neural network classifier. The neural network classifier (wich is based on a feed­
forward back-propagation neural network architecture) properly exploits the information in the 
combined features for providing high accuracy classification results. The effectiveness of the 
proposed method is demonstrated using E-SAR polarimetric data acquired on the area of Penajam, 
East Kalimantan, Indonesia. 

Keywords: Po/ahmeiric-SAR, scattering model. Freeman decomposition, Cloude decomposition, 
texture analysis, feature extraction, classification, neural networks. 

I. Introduction 

Fully polarimetric-SAR data can 
define the scattering behavior of land 
use/cover, thus giving better land 
use/cover classification results than single-
channel single-polarization SAR data 
(Karathanassi and Dabboor, 2004; 
Woodhouse, 2006). Many different 
approaches for the so called target 
(polarimelric) decomposition have been 
proposed to extract the information about 
the scattering mechanisms of different 
nature, which can be employed to assist 
the interpretation and the classification of 
polarimetric-SAR data. Freeman 

decomposition model and Cloude 
decomposition model are the most 
intensively used decomposition method 
for this purpose, because they are based on 
more realistic scattering models, their 
simplicity and easy implementation for 
image processing (Lee et al., 2006; 
Yamaguchi et at., 2005). In Freeman 
decomposition model (Freeman and 
Durden, 1998), radar backscatter 
responses are decomposed into three basic 

scattering mechanisms: surface scattering, 
double bounce scattering, and volume 
scattering. Volume scattering is modeled 
by a cloud of randomly oriented dipoles 
for tree canopy and vegetation. Double-
bounce scattering component is modeled 
by scattering from dihedrals, but allows 
for reflector surfaces with different 
dielectric properties, corresponding to, for 
example trunk-ground interaction in forest 
scatter. Surface or single-bounce scattering 
is modeled by a Bragg surface scatlerer. 
Cloude and Pottier (1997) proposed an 
unsupervised classification based on their 
target decomposition theory. The 
medium's scattering mechanism, 

characterized by entropy H and alpha 
angle a, are used for classification. The 
entropy H is a measure of randomness of 
scattering mechanisms, and the alpha 
angle a characterizes the scattering 
mechanisms. The H-a plane was 
divided into eight zones. The physical 
scattering characteristic associated with 
each zone provides information for terrain 
type assignment. 
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These polarimetric decomposition 
methods have been found to be applicable 
to land cover classification (Cloudc and 
Potlicr, 1997; Freeman and Durdcn, 1998; 
Lumsdon 2003), sea ice classification 
(Scheuchl, 2001), and forest classification 
(Ferro-Famil et al, 2005; Lee et al, 
2005). In general, they reported that 
applying decomposition polarimetric 
permits to identify in a macroscopic way 
the type of scattering mechanism. For 
example, open water and bare soils arc 
characterized by surface scattering. 
Scattering over forested areas is dominated 
by volume scattering while urban areas 
mainly characterized by double bounce 
scattering. However, in some cases they 
also observed that these schemes do not 
provide sufficient sensitivity especially for 
the separation of the volume scattering 
class and double scattering class. For 
example, urban areas (double scattering) 
are frequently interpreted as forest 
(volume scattering). It was also reported 
some limitation for further possibility to 
discriminate and classify into different 
object / land cover types in same scattering 
mechanism, for example, for classifying 
forested area into different forest types and 
growth stages. 

In order to reduce inter-class 
ambiguity and improve the classification 
accuracy, further information has to be 
used. An analysis of the interferometric 
coherence can be useful to discriminate 
various types of forested area (Lee et a/., 
2005; Ferro-Famil et al., 2005). However, 
this method works effectively if a pair of 
polarimetric interferometric data (i.e., two 
data of the same object acquired from 
different sensor positions) is available to 
compute the interferometric coherence 
information. In this paper, the 
consideration of additional information 
which can be extracted directly from a 
polarimetric image but using different 
aspect would be meaningful. A texture 

Using Combined Features 

approach has been chosen which it can 
measure several aspects of spatial structure 
of an image. And we investigate how the 
textural features can be of help in 
discriminating different land-cover types. 
Textural features have a demonstrated 
ability to support image segmentation in 
many areas (Tso and Mather, 2001) and 
have also demonstrated potential for 
classifying sea ice types (Deng and Clausi, 
2005; Clausi and Jemigan, 1998) and 
urban areas (Acqua and Gamba, 2003) in 
SAR imagery. Various texture methods 
are found in the research literature to 
extract textural features. For SAR image 
classification, it has been shown that the 
grey-level cooccurence matrix (GLCM) 
method is an effective method to generate 
appropriate textural features (Deng and 
Clausi, 2005; Tso and Mather, 2001). 

The selection of the classification 
algorithm is critical issue in the 
classification of polarimetric data using 
multi-aspect information. When standard 
features associated with the intensity or 
amplitude of SAR signals arc exploited, 
maximum-likelihood classifiers are 
commonly used. However, our features are 
extracted from different aspect, so 
parametric classifiers become more 
difficult to use, as it is not possible to 
make reasonable assumptions on the class 
distributions of these combined features 
(Tso and Mather, 2001; Bruzzone et at., 
2004). In this paper, we propose a 
classification method that integrates the 
combined features extracted from two 
different aspects with distribution-free 
neural network classifier. 

The proposed method is consisted of 
five main modules: 1) a pre-processing 
module; 2) a feature-extraction module 
based on scattering models; 3) a feature-
extraction based on texture analysis; 4) a 
classification module based on neural 
network; and 5) a post-processing module. 
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The pre-processing module is based on a 
set of procedures commonly used in 
polarimetric-SAR data processing, we first 
prepare/construct scattering matrix from 
single look complex (SLC) data for each 
polarization, then apply speckle reduction 
filtering. The feature extraction module 
based on scattering models computes two 
sets of features derived from two 
polarimetric decomposition methods: 
Freeman decomposition and Cloude 
decomposition. The feature extraction 

module based on image texture computes 
a set of GLCM textural features. The 
classification module is based on feed­
forward back-propagation neural network. 
The post-processing module is used to 
improve the classification result by 
correcting a possible misclassification of a 
pixel using the membership probability of 
pixel in its neighborhood. The block 
scheme of the proposed method is shown 
in Fig. 1. 

Fig. 1. Block scheme of the proposed method 

The proposed method has been tested 
on a fully polarimetric E-SAR (L-Band) 
data acquired on the area of Penajam, East 
Kalimantan, Indonesia. We examined the 
method using: 1) the combined features of 
Freeman decomposition • model and 
textural features and 2) the combined 
features of Cloude decomposition and 
textural features, and compared both 
results. 

This paper is organized into the 
following fashions. Section I is 
introductory. Section II briefly describes 
the feature extraction based on scattering 
models. Section III briefly presents feature 
extraction based on GLCM texture 
analysis. Section IV explains the 
classification module, which is based on 
feed-forward back-propagation neural 
network and post-processing techniques. 
The experimental results are reported in 

section V, and finally, Section VI provides 
a discussion and conclusion. 

II. Feature Extraction based on 
Scattering Models 

a. Polarimetric Data Representation 

For radar polarimetry, the 
backscattering properties of the target can 
be completely described by a 2x2 
complex scattering matrix, S, such that: 

(1) 

where Shv is the scattering element of 

horizontal transmitting and horizontal 
receiving polarization, and the other three 
elements are similarly defined. For the 
reciprocal backscattering case, Shy = Svh. 

The polarimetric scattering information 
can be represented by a target vector, 
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(2) 
where the superscript "T" denotes the 

matrix transpose. The V2 on the S/n, term 

is to ensure consistency in the span (total 
power) computation. Polarimetric 
information can also be represented by a 
covariance matrix C in the following 

where the superscript "*" denotes the 
complex conjugate. From (3), the span (or 
total power) is expressed as 

The coherency matrix representation 
has the advantage over the covariance 
matrix of relating to underlying physical 
scattering mechanisms (Lee et ah, 1999-
a). 

Fully polarimetric data provides 
unique possibility to separate scattering 
contributions of different nature, which 
can be associated to certain elementary 
scattering mechanisms. Several 
decomposition techniques have been 
proposed for this purpose. Freeman 
decomposition model and Cloude 
decomposition model are the most 
intensively used in several researches. 

a.l. Feature Extraction based on 
Freeman Decomposition 

The Freeman decomposition (Freeman 
and Durden, 1998) models is the 
covariance matrix C as the contribution 

of three basic scattering mechanisms: 
surface or single-bounce, double-bounce, 
and volume scattering. Volume scattering 
is modeled by a cloud of randomly 
oriented dipoles for tree canopy and 
vegetation. Double-bounce scattering is 
realistically described by scattering from 
dihedrals, but allows for reflector surfaces 
with different dielectric properties, 
corresponding to, for example trunk-
ground interaction in forest scatter. 
Surface or single-bounce scattering is 
modeled by a Braĝ g surface scatterer. 
Hence, the Freeman decomposition 
expresses the measured covariance matrix 
C as follows: 

C = Cv+Cd+Cs (7) 

where Cv, Cd, and Cs are covariance 

matrix corresponding to each scattering 
component (volume, double, surface) as 
presented in Table 1. From these matrices, 
then the contributions of each scattering 
mechanisms Pv, Pd, 
power) P can be 
scattered powers Pv, x d, 

employed to generate RGB image and can 
be used as classification features to allow 
differentiation between different land 
cover types (Freeman and Durden, 1998; 
Lumsdon, 2003). 

Ps to the span (total 

estimated. These 

PA, P, can be 

a.2. Feature Extraction based on 
Cloude Decomposition 

The polarimetric decomposition 
theorem introduced by Cloude and Pottier 
(1997) proposed to identify polarimetric 
scattering mechanisms based on the 
eigenvalue analysis of a coherency matrix 
T. Applying eigenvalue analysis, the 
matrix T is decomposed into a sum of 
three coherence matrices T,, each 

weighted by its corresponding eigenvalue 
X,. 
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The entropy H, ranging from 0 to 1, 
represents the randomness of the 
scattering, with H = 0 indicating a single 
scattering mechanism (isotropic scattering) 
and H = 1 representing a random mixture 
of scattering mechanisms. For ocean and 
less rough surfaces, surface scattering will 
dominate, and ^/ is near 0. For heavily 
vegetated areas, the H value will be high, 
due to multiple scattering mechanisms. 
The anisotropy A represents the relative 
importance of the second and third 
scattering mechanisms. A high anisotropy 
states that only the second scattering 
mechanism is important, while a low 
anisotropy indicates that the third 
scattering mechanism also plays a role. 
The mean alpha angle a reveals the 
averaged scattering mechanisms from 
surface scattering (a—»0°), volume 
scattering ( « - » 4 5 ° ) , to double bounce 
scattering («—> 90°). H and a clearly 
characterize the scattering characteristics 
of a medium. 

Cloude and Pottier further suggest an 
unsupervised classification scheme, using 
the H-a plane sub-divide into 8 basic 
zones characteristic of different scattering 
behaviors, as shown in Fig. 2. However, 
this unsupervised estimation of the type of 
scattering mechanisms may reach some 
limitations due to the arbitrarily fixed 
linear boundaries in the H-a plane 
which may not fit to data distribution, 
leading to noisy classification results 
(Ferro-Famil et at, 2005; Lee et at, 1999-
a). Hence, in this work, we use entropy 
H, anisotropy A , and mean alpha angle 
a directly as classification feature inputs 
to the neural network classifier. 

REMOTE SENSING AND EARTH SCIENCES September 2007 Volume 4 5 



Classification of Polarimetric-SAR Data with Neural Network Using Combined Features 
Extracted from Scattering Models and Texture Analysis 

REMOTE SENSING AND EARTH SCIENCES September 2007 Volume 4 



Katmoko Ari Sambodo, Aniati Murni and Mahdi Kartasasmita 

Then train the network sufficiently in 
a supervised method, and let the network 
to determine the optimal decision 
boundaries in feature space. 

III. Feature Extraction based on Image 
Texture Analysis 

Texture features calculated from grey-
level cooccurrence matrices (GLCM) are 
often used for remote sensing image 
interpretation (Clausi and Jernigan, 1998; 
Acqua and Gamba, 2003; Tso and Mather, 
2001), and the results have generally been 
successful. A GLCM contains the 
conditional-joint probabilities (Pt ) of all 

pairwaise combinations of grey levels for 
a fixed window size (N) given two 
parameters: interpixel distance (S) and 
interpixel orientation {$). A different 
GLCM is required for each (S, 0) pair. 
Each GLCM is dimensioned to the number 
of quantized grey-levels (G). Applying 
statistics to a GLCM generates different 
texture features. Eleven common features 
are presented in Table 2. These statistics 
extract several fundamental characteristics 
from the cooccurrence matrices. Moments 
about the main diagonal indicate the 
degree of smoothness of the texture (i.e., 
contrast, dissimilarity, and inverse 
difference moment). Another fundamental 
characteristic of the cooccurrence matrix is 

the uniformity of its entries (i.e., entropy, 
maximum probability, and angular second 
moment). If the grey-levels in the window 
tend to be homogeneous, then only a few 
grey-level pairs represent the texture. The 
features measure statistical property of 
GLCM (i.e., mean, variance, and 
correlation). And finally, features 
measure the grouping of pixels that have 
similar grey-level values (i.e., cluster 
shade and cluster prominence). 

A shortcoming of determine texture 
features derived from GLCM is the 
excessive computational burden. For fully 
polarimetric images data, we can calculate 
textural features from four individual 
intensity images, i.e., HH, HV, VH, and 
VV images. However, this method may 
not be practical in terms of computational 
cost and make more complicated in 
interpretation due to large number of 
derived textural features. In this paper, we 
use only one span image, as calculated 
using (4). The span (or total power) image 
is a weighted average of HH, HV, and VV 
intensities and consequently has a lower 
speckle noise than HH, HV or VV 
individually. HH, HV, and W may have 
different scattering characteristics. 
Consequently, many features that may 
appear differently in each polarization, 
channel will show up in the span image 
(Lee era/., 1999-b). 
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IV. Neural Network Classifier and Post-
Processing Technique 

a. Neural Network Classifier based on 
Feed-Forward Back-propagation 
Neural Network 

The multilayer feed-forward using the 
back-propagation learning algorithm is 
one of the most widely used neural 
network. In this work, we apply multilayer 
feed-forward neural network architecture 
as depicted in Fig. 3., with an input layer, 
a hidden layer, and an output layer (Canty, 
2006). The network contains L neurons in 
the hidden layer for classification of N -
dimensional data into K classes. 

The input layer accepts N +1 (biased) 
input feature vector g(v) 

(g(v) = (lgl(v)...gw(v))T), and broadcast 

them to all of the L neurons in the hidden 

layer via weighted connections W . 
Neurons in the hidden layer sum all 
incoming signals and then computes its 
activation to form an (L +1 )-component 
vector of intermediate outputs n(v) 

(n(v) = ( U , ( v ) . . . « » ) T ) . The logistic 

sigmoid function (f(x) = \/(\ + e~x)) is 

the most commonly used activation 

function. Intermediate outputs n(v) then 
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transferred to all of the K neurons in the 
output layer via weighted connections 

W. Similarly, each neuron in the output 
layer sum of all incoming signals and then 
computes its activation to form the output 
signal m(v) (m(v) = (ml(v)...mK(v))1 ). 
However, in the output layer we use a 
modified logistic activation function for 
the output neurons, called softmax. The 
softmax function is defined as: 

~ e/f,(n(v)) +e
/>(")> - K ^ - I V ^ - M ' 

where: 

/ > ( v ) ) = W;Tn(v), k = \...K (15) 

This activation function, not only 

satisfy the condition 0 < mk (v) < 1 , but 

also guarantee that the output signals sum 

to unity ( £OTt(v) = l )• BY u s i n g t h i s 

activation function, the final network 
output will not only classify input feature 
vector into a class K (by selecting 
maximum value of mk), but also generate 

class membership probability vectors 
m(v) for each observation. (These results 
will be used at post-processing module.) 
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Neural network must learn how to 
process inputs before they can be utilized 
in an application. According to the 
supervised learning scheme, the process of 
neural network training involves adjusting 
the weights on each layer ( W ' and W) 
in such a manner that output of the 
network is consistent with the desired 
output (target class). The most well-
known and extensively used for updating 
these weights is back-propagation learning 
algorithm. The back-propagation 

algorithm trains a neural network 
iteratively using a gradient descent 
algorithm in which the mean square error 
between the network output and the 

desired output is minimized. Once the 
network error has decreased to less than a 
specified threshold, the network has 
converged and is considered to be trained. 
However, the standard back-propagation 
learning algorithm is notoriously slow to 
convergence. To overcome this problem, 
we adopt two learning algorithms, i.e., 
Kalman filter and scaled conjugate 
gradient learning algorithm presented in 
Canty (2006). Learning process, then 
beginning with the former in order to 
approach a minimum (error) quickly, and 
then using the latter to refine the weights. 
Convergence is extremely fast when 
compared to standard back-propagation. 

Fig. 3. A feed-forward neural network with L hidden neurons for classification of 
N-dimensional data into K classes. 

b. Augmented-Vector Classification 
Method 

The proposed method, as mentioned 
before, uses features extracted from two 
different aspects. In this work, we 
combine these features using stacked-
vector or augmented-vector method as 
inputs to the classifier module, by simply 
extending the dimension of the data 
vectors to include each source from two 
aspects (Tso and Mather, 2001). For 
example, if we have three features 
extracted from scattering models and 
eleven features extracted from texture 

analysis, then fourteen features can be 
used together as inputs to the classifier 
module. 

c. Post Processing Technique 

Pixel-oriented classifiers sometimes 
provide classification result that contains 
misclassification at the pixel level that 
randomly distributed, and appear as "salt-
and-pepper" effect in the classification 
map result. Richards and Jia proposed a 
method for correcting a possible 
misclassification of a pixel by examining 
the membership probability of the pixel in 
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where P = (p)w is a K x K matrix of 

compatibility measures expressing the 
probability that a pixel in class k has a 
neighbor in class /, m„ is the average 

class membership vector for a 4-
neighborhood of pixel i, and * denotes 
H adamard (component-by-component) 
multiplication. P is easily estimated 
directly from the originally classified 
image. The probabilistic label relaxation 
procedure can be iterated arbitrarily often. 
However too many iterations may lead to a 
widening of the effective neighborhood of 
a pixel to such an extent that irrelevant 
spatial information may falsify the final 
classification. Experiences show that the 
best results are obtained after 2-A 
iterations. 

V. Experimental Results 

The proposed method is tested using 
single look complex (SLC) fully 
polarimetric-SAR data acquired over 
Penajam area, East Kalimantan Province. 
These data were acquired in L-band by 
Airborne E-SAR method on September 
17th, 2004. The spatial resolution of the 
data used is 1.99 m and 3.0 m, in range 
and azimuth respectively. The scene under 
study contains different type of land 
covers: forest, fields, bare soils, and water 
area. Fig. 4 shows a set of ground survey 
information, and then by analyzing these 
data, a set of regions of interest (ROI) was 
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Using Combined Features 

defined. The whole ROI dataset then 
divide into two datasets, around 8.3% for 
training and around 91.7% for testing the 
neural network classifier (described in 
Table 3). From the testing dataset, we 
estimate the classification accuracy based 
on analysis of the confusion matrix. 

As stated in Section IV, the feed­
forward neural network classifier is 
consisted of three layers. The input layer 
has a number equal to a number of features 
of the used dataset, while output layer has 
a number equal to a number of classes to 
be recognized (i.e., four neurons in the 
classification of forest, fields, bare soils, 
and water area). However, then we must 
determine the number of neurons in the 
hidden layer. For this purpose, we carried 
experiments with classification using 
several combined features (3 features of 
scattering model and 11 textural features), 
and increase the number of hidden neurons 
incrementally (with 2, 10, 20, 30, 40, and 
50). When a few neurons are used, the 
classification results are not satisfactory, 
whereas the larger number of the neurons 
cause longer neural network training 
times. We found that 30 neurons are the 
most appropriate selection in this 
experiment, larger then 30 neurons just 
provide slightly better classification 
performance. Then we used this neural 
network structure as classifier on the 
classification module. 

For preprocessing, we construct 
scattering matrix from SLC data for each 
polarization and then apply speckle 
filtering using J.S. Lee Polarimetric Filter 
(Lee et ah, 1999-b). In order to investigate 
the effect of window size selection on 
classification performance, five windows: 
3x3, 5x5, 7x7, 9x9 have been 
implemented, and without speckle 
filtering. In this experiment, larger then 
9x9 windows is not used, because it causes 
too much blurring. 
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its neighborhood (Canty, 2006). They 
describe a method referred to as 
probabilistic label relaxation, which we 
have adapted here to improve our 
classification result and take spatial 
information into account. The class 

membership vectors m, =(mu...mKi)
T are 

updated according to 



To extract GLCM textural features (11 
features), first we compute the span 
images for filtered images using (4). In 
this experiment, these features are 
computed on a window size 15x15 pixels 
and grey-level quantization equal 64. The 
interpixel distance is set equal to one in all 
four interpixel orientations, i.e., 0, 45, 90, 
and 135° to account for possible 
directionality of the objects. Then 
classifications are performed for each data 

Katmoko Ari Sambodo, Aniati Mumi and Mahdi Kartasasmita 

using neural network in order to determine 
the most appropriate textural feature sets. 
We observe that the highest accuracy, 
84.30% is obtained from dataset without 
speckle filtering, and the classification 
result is shown in Fig. 7-b. (Filtering has 
the potential to reduce textural information 
from the image). Then we use these 
textural feature sets as combined features 
with other features extracted from 
scattering mQdels. 

Table 3. Number of training and testing samples used in the experiments 
. \ 

Land-cover Class 
Water 
Forest 
Fields 

Bare soils 
Total Pixels 

Training Set 
761 
348 
284 
302 

1,695 

Testing Set 
8,361 
3,822 
3,128 
3,327 

18,638 

• 
• 

• 

Water 
Forest 
Fields 
Bare soils 

Fig. 4. Ground survey information 
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Figure. 7. Classification results (thematic map and confusion matrix of testing dataset) 
using neural network classifier with combined features of Freeman 
decomposition model and GLCM textural. These results are obtained with 
speckle filter window size equal to 7x7 pixels. (Classification result using 
maximum likelihood classifier is also presented as comparison) 

To extract features based on scattering 
models, first we convert the scattering 
matrix representation into covariance 
matrix and coherency matrix using (3) and 
(6), respectively. Then, we apply Freeman 
decomposition and Cloude decomposition 
for each speckle-filtered data. Fig. 5 
shows the features extraction results from 
Freeman decomposition. We can observe 
that this decomposition provide good 
discrimination of different land cover 
types. Forested areas is dominated by 
volume scattering while water areas 
mainly characterized by surface scattering. 
Surface scattering is still dominant for 
bare soils, but a significant amount of 
double bounce scattering is present. This 
indicates that a number of the fallen tree 
trunks and branches lying on the clear-cut 
areas may cause double-bounce scattering. 

However, the similar scattering 
mechanisms are also observed on field 
areas, and may cause poor separability 
between fields and bare soils. We then use 
these features as input for neural network 
classifier module. The classification result 
for 7x7 speckle-filtered data is shown in 
Fig. 7-a. High accuracy (93.63%) is 
obtained, but some misclassification 
between forest, fields, and bare soils 
occurred. However, when we combine 
these features with textural features, the 
classification accuracy is improved more 
than 4.5%. Results for each speckle-
filtered data are shown in Fig. 9 (We plot 
the overall accuracy as a function of the 
window size of the speckle filter). It was 
found that for each case, the classification 
accuracy was improved by 3% ~ 20%. 
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Fig. 8. Classification results (thematic map and confusion matrix of testing dataset) 
using neural network classifier with combined features of Cloude decomposition 
model and GLCM textural. These results are obtained with speckle filter 
window size equal to 7x7 pixels. (Classification result using maximum 
likelihood classifier is also presented as comparison) 
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Fig. 6 shows the features extraction 
results from Cloude decomposition. By 
analyzing mean alpha angle a and 
entropy H, we can observe that open 
water area is characterized by surface 
scattering (alpha values less than 42.5°) 
with low entropy, while forest area is 
characterized by volume scattering 
(alpha values near 45°) with high 
entropy (H > 0.9). Bare soils and fields 
are both characterized relatively by 
medium entropy and low alpha values, 
and may cause low separability between 
these two classes. Anisotropy A does 
not provide sufficient sensitivity for the 
separation of the different land-cover 
types, however, may be used for 
separation of the bare soil class and field 
class. We then use these features as 
input for neural network classifier 
module. The classification result for 7x7 
speckle-filtered data is shown in Fig. 8-
a. Overall accuracy 83.48% is obtained, 
with some misclassification between 
forest, fields, and bare soils are occurred 
evidently. It can also be observed that 
water class at river areas can not be 
accurately identified. However, when 
we combine these features with textural 
features, the classification accuracy is 

significantly improved more than 15%. 
Results for each speckle-filtered data are 
shown in Fig. 9. It was found that for each 
case, the classification accuracy was 
improved by 13% ~ 25%. 

In order to point out the improvements 
that can be obtained with the classification 
module defined in our method, we compared 
the results of the neural network classifier 
with those obtained when classifying the 
combined features dataset with maximum 
likelihood classifier. In all trials, we 
observed that the accuracies exhibited by the 
neural network are always higher (3%~11%) 
than by maximum likelihood classifier 
(shown in Fig. 9). These results can also be 
confirmed in Fig. 7-d and Fig. 8-d, which 
some misclassification between forest, 
fields, and bare soils are occurred evidently, 
and water class at river areas can not be 
accurately identified by maximum likelihood 
classifier. 

VI. Conclusion 

A method for supervised classification of 
polarimetric-SAR data has been proposed. 
The method was designed by integrating the 
combined features extracted from two 

REMOTE SENSING AND EARTH SCIENCES September 2007 Volume 4 15 



Classification of Polarimetric-SAR Data with Neural Network Using Combined Features 
Extracted from Scattering Models and Texture Analysis 

data set was acquired through INDREX-II 
experiment (Indonesian Airborne Radar 
Experiment) supported by the European 
Space Agency. 
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