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Abstract. This paper shows a study on an aternative method for unsupervised
class lled ion of polarimetric-Synthetic Aperture Radar (SAR) data. The first step was
lo extract severd main physica polarimetric parameters (polarization power,
coherence, and phase difference) from polarimetric covariance matrix (or coherency
matrix) and physical scattering characteristics of land use/cover based on polarimetric
decomposition (Cloude decomposition model). In this paper, we found that these
features have complementary information which can be integrated in order to improve
the discrimination of different land use/cover types. Classification stage was performed
usng Fuzzy Maximum Likelihood Estimation (FMLE) clustering algorithm. FMLE
agorithm allows for ellipsoidal clusters of arbitrary extent and is consequently more
flexible than standard Fuzzy K-Means clustering algorithm. However, basic FMLE
agorithm makes use exclusively the spectral (or intensity) properties of the individual
pixe vectors and spatial-contextual information of the image was not taken into
account. Hence, poor (noisy) classification result is usually obtained from SAR data due
lo speckle noise. In this paper, we propose a modified FMLE which integrate basic
FMLE clustering with spatial-contextual information by statistical analysis of loca
neighbourhoods. The effectiveness of the proposed method was demonstrated using E-
SAR polarimetric data acquired on the area of Pengjam, East Kalimantan, Indonesia.
Reaults showed classified images improving land-cover discrimination performance,
exhibiting homogeneous region, and preserving edge and other fine structures.
Keywords: Ctoude's polarimetric decomposition. FMLE clustering, polarimetric
coherence, Polarimetric-SAR, unsupervised classification.

1. Introduction

Fully Polarimetric-SAR sensors are
becoming more and more important in
remate sensing applicationsdueto: 1) itsall-
weather, day and night operational
capability; 2) its sensitivity of the
polarization state of the backscattered wave
to physca characteristics of the ground
taget (e.g. shape, size, orientation, surface
roughness, moisture content, dielectric
properties of the target) (Woodhouse, 2006;
T and Mather, 2001; Bruzzone d 4.,
2004). The utilization of multi-polarized

wave in polarimetric-SAR system allows us
to extract additional information which can
be employed as classification features, thus
giving better land use/cover classification
results than single-channel single-
polarization SAR data (Karathanassi and
Dabboor, 2004; Woodhouse, 2006). For this
reasons, in recent years, the remote sensing
community has become increasingly
interested in the use of polarimetric-SAR
data for the production of high accuracy land-
cover maps.
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Many algorithms have been proposed for
supervised and unsupervised classification
of polarimetric-SAR dala. In supervised
classification approach, the choice of
training areas which adequately represent the
spectral characteristics of each class is
important as Ihe quality of the training set has
a profound effect on the validity of the result.
This manual technique of finding and
verifying training areas can be laborious, and
particularly more complicated when ground
truth (which often both cost and time
consumption) or other priori information
about the data is not available. On the other
hand, unsupervised classification
compensate for these deficiencies by finding
an Underlying class structure automatically
and then organizing the data into groups
sharing similar characteristics (Canty,
2006). Unsupervised classification for
polarimetric-SAR follows two major
approaches. One is based on purely on
statistical clustering of polarimetric-SAR
data, and the other is based on the analysis of
physical scattering properties. In former
approach, the 3x3 complex covariancc
matrix (or coherency matrix) formed from
SAR polarimetry system measurements was
assumed to have a multivariate complex
Wishart distribution. Researchers use this
distribution to derive distance measures for
various clustering algorithm(Kersten et al.,
2005; Davidson elai, 2002).

The later approach used the inherent
characteristics of polarimetric-SAR data and
classified based on scattering mechanisms of
the target scene. Fully polarimetric data
provides unique possibility to separate
scattering contributions of different nature,
which can be associated to certain
elementary scattering mechanisms (e.g.
surface or single-bounce, double-bounce,
and volume scattering). Several
decomposition techniques have been
proposed for extracting and identifying these
valuable information. One method is based
on polarimetric target decomposition theory

proposed by Cloude and Pottier (1997),
which is capable of covering whole range of
scattering mechanisms and yields an'
unsupervised classification scheme. The
target's scattering mechanism can be
parameterized by entropy //and alpha angle
a which derived from the eigenvalue
decomposition of the coherency matrix. The
entropy H is a measure of randomness of
scattering mechanisms, and the alpha angle a
characterizes the scattering mechanisms. The
H-a plane was divided into eight zones. The
physical scattering characteristic associated
with each zone provides information for
terrain type assignment.

Additionally, several interesting
combinations of these types of classification
approaches have been found (Lee el al.,
1999-a: Kersten et al.. 2005 ). Lee et at.
(1999-a) developed some classification
methods combining both the Cloude's
polarimetric decomposition and clustering
algorithm based on the complex Wishart
distribution (often referred as complex
Wishart classifier). These methods achieve
preliminary classification sets using the H-a
plane (8 zone), and thereafter iteratively
classify these preliminary sets using Wishart
classifier to make final classifications.
Unsupervised Wishart H-a classification
has been found to be applicable to land cover
classification (Lumsdon, 2003), sea ice
classification (Scheuchl, 2001), and forest
classification (Ferro-Familc/o/.. 2005).

In general, acceptable classification
results were obtained, w hereas in some cases,
they also reported some limitations of these
methods for further possibility to
discriminate and classify into different
object/ land cover types especially with
similar scattering mechanism and often yield
clusters (classes) whose physical meaning is
uncertain. To overcome these problems, it is
advisable to use the additional information
which can be included as extension input
features thus reduce inter-class ambiguity

2 International Joumal of Remote Sensing and Earth Sciences Vol. 5. 2008



and improve the classification performance.
Although such additional information can be
obtaned from other data sources (such
opticad data, multi-frequency radar data,
geologicd maps, etc), the consideration of
additional information which can be
extracted directly from same polarimetric-
SAR data but using different aspect would be
meaningful (such image texture, context,
Sructurd relationships, etc). For example, in
our previous publication (Sambodo € al.,
2007), we show that integration the
combined features extracted from
polarimetric decomposition and textural
andyds with supervised neural network
classifier successfully improve the
classfication results in a significant way.
However, the aforementioned Wishart
dasdfir use a 3x3 complex covariance
metrix (or coherency matrix) formasaninput
fegture, thus other additional features (which
usudly represent as various data types) can
nat be added into thisinput form.

Ancther limitation of these algorithms is
thet they performed on a pixel-by-pixel basis,
i.e, each pixel istreated independently of its
neighbours, spatial context isonly indirectly
conddered during speckle filtering. Thelocal
neighbourhood does indeed have a
donificat influence on a pixel's class
membership. When a certain region already
hes dready been classified, with high
confidence, as belonging to asingle class, it
becomes comparatively unlikely that a pixel
in this region belongs to another class. The
much more likely scenario is misestimation
of its covariance matrix due to speckle noise,
which usually produced very noisy
classfication results (often appear as "salt-
and-pepper” effect even in homogeneous
areas). Due to inherently high noise level of
SAR data, the inclusion of local
neighbourhoods in statistical decision about
dass membership is hepful to support

homogeneous classification results (Canty,
2006).
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Inthis paper, we propose an unsupervised
classification method based on FMLE
clustering algorithm that integrates
complementary information of severa
polarimetric parameters and target scattering
characteristic features, and spatial contextual
information. Fuzzy classification techniques
allow each pixel in the image to belong to
more than one cluster according to its degree
of membership in each clusters (Canty, 2006:
Tso and Mather, 2001). Therefore, it is
suitable tor classification of SAR data as the
presence of speckle noise often causes many
pixels in the data arc really ambiguous (i.e.,
imprecise, incomplete, and not totally
reliable). A FMLE clustering has been chosen
which it alows for hyperellipsoidal forms of
theclustersand isconsequently more flexible
than standard fuzzy k-means (FKM)
clustering (with the use of Euclidean
distance, thus giving circular clusters)
(Canty, 2006; Canty and Nielsen, 2004).

Further advantage is that other features
can be easily added into FMLE clustering
process by extending the dimension of the
input data vectors. These properties enable us
to combine the wide range of information
(features) which can be derived from
polarimetric-SAR data using different
feature extraction methods. In our case,
motivate by our previous publication
(Sambodo € a/., 2007), we will combine
several main polarimetric parameters
(polarization power, coherence, and phase
difference) extracted from polarimetric
covariance matrix and physical scattering
characteristics of land use/cover based on
Cloude's polarimetric decomposition. These
features have complementary information
which can be integrated in order to improve
the discrim ination of different land use/cover

types.
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Figure 1. Block scheme of the proposed method.

However, the basic FMLE agorihtm isa
pixel-by-pixel basis classifier. Thus, in order
to exploit the spatial-contextual information,
we investigate the possibility of using
probabilistic relaxation schemes. It
iteratively adjust some initia estimates of the
class-membership probabilities by reference
to the classsmembership probabilities of
pixels in its neighborhood. In this paper, we
propose a contextua FMLE classification
which integrate probabilistic relaxation
scheme into FMLE clustering iterations in
order to improve the estimation of clustering

parameters themselves thus provide better
classification resullt.

The proposed method has been tested on a
fully polarimetrie E-SAR (L-Band) data
acquired on the. area of Pengjam, East
Kalimantan, Indonesia

This paper isorganized into the following
fashions. Section Il briefly describes the
feature extraction procedures, which
extracting several main polarimetrie
parameters from polarimetrie covariance
matrix and severa physical scattering

4 International Journal of Remote Sensing and Earth Sciences Vol.5, 2008



characteristics  based on  Cloude's
polarimetric decomposition. Section 11
explans the proposed classification

procedure, which is designed by integrating
spatid-contextud  information with fuzzy
maximum likelihood clustering algorithm.
The experimental results are reported in
sdtion 1V, and finally, Section V provides
adiscusson and conclusion.

2. Feature Extraction Schemes
2.1. Polarimetric Data Representation
and Polarimetric Parameter
Features Extraction
For radar polarimetry, the
backscettering properties of the target can
be completdy described by a 2x2
complex scattering matrix, S, such that

o

S‘ B S £

L V¥

whae S, is the scattering element of

horizontd  transmitting and  horizontal
recaiving polarization, and the other three
damants are similarly defined. For the
rediprocd backscattering case, Sy, = S .
Becaue there are effectively only three
indegpendat  elements, the polarimetric
<dtaing  information can  aso  be
represented by a target vector,

k= |5, V35, 8.7 @)
where the superscript “T” denotes the
matrix transpose. The +/2 on the §, term

(1

5 to ensure consistency in the span (total

power) computation. A polarimetric
covariance matrix € can be formed by:
Sul V288 8.8
E=t'=|425,8, s, 288 |
| 8.8.° H8.8. B |

LU

whae the superscript "*" denotes the
comdex conjugate. C is a 3x3 Hermitian
matrix, and has only six independent
demeants which can be employed as feature

sets for classification purposes. Three red
numbers on the main diagona represent the
powers (or intensity) of each polarization
channels.

The other three complex numbers on the
off diagona represent the complex
correlations, which can be used to quantify
the similarity of waves (or coherence) at
different polarization. For this purpose, the
normalized value of this complex
correlations (for example, for element Ci3

isgven by y - (s,s, )

is generally used. The magnitude of y
(i.e., |/]) dives a measure of the degree of

polarimetric coherence and lies between
zero (incoherent) and one (completely
coherent). The phase of y represents the

phase difference between two polarization
states and lies between 0 and 180°. The
degree of polarimetric coherence and
polarimetric  phase difference closely
related to the physical characteristics of the
target scene so it can be used as a feature
set to discriminate different land-cover
types (Woodhouse, 2006). However, the
sensitivity of these parameters are different
depend on what polarizations are chosen.
Hence, in this work, we select two most
promising features: ie, HH-VV
polarimetric  coherence and HH-VV
polarimetric phase difference.

2.2. Feature Extraction based on
Cloude's Polarimetric
Decomposition

Fully polarimetric data provides unique
possibility to separate  scattering
contributions of different nature, which can
be associated to certain elementary
scattering mechanisms (e.g. surface or
single-bounce, double-bounce, and volume
scattering). Severa decomposition
techniques have been proposed for this
purpose. In recent years, approaches based
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on the coherency matrix is usually
preferred because its elements have
relationship to the physics of wave

scattering. The coherency matrix is formed,
similarly with the covariance matrix C ,
but using the Pauli target vector k, , such
that

T=k k' 4

where

P (8, +8. 8.—8. 98,
=5

1%

od

The polarimetric decomposition
theorem introduced by Cloude and Pottier
(1997) proposed to identify polarimetric
scattering  mechanisms  based on  the
eigenvalue analysis of a coherency matrix
T . Applying eigenvalue analysis. the
matrix T is decomposed into a sum of
three coherence matrices T each
weighted by its corresponding eigenvalue

A

T=Y AT = Al 2V At )+ At )
=]

Each matrix 7, is a unitary scattering
matrix ~ representing a  deterministic
scattering contribution. The amount of the
contributions is given by the eigenvalues
4, , while the type of scattering is related to
the eigenvectors #¢, . The eigenvectors can
be formulated as
M= ;cosaf‘ siner, cosfFe™ sin(x.sin,(f,e“f}'r (6)
The « angle corresponds to the
continuous change from surface scattering
{ @ =0"), moving into dipole or volume
scattering (¢ = 45" ), moving into double
bounce scattering between two dielectric
surfaces, and finally reaching dihedral

The g angle is twice of the polarization

orientation angle. The § angle is the phase
difference between the decomposed
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Sip + 5,
angle is the phase difference between the
decomposed §,, +8  and §, terms. The
¢ angle is
S, +S, term,

and S, - S, terms, and the y

phase of the decomposed

Cloude and Pottier defined three
secondary  parameters, entropy H
anisotropy A ., and mean alpha angle & , to
characterize the result of  the
decomposition.

z .
- A 73
H = Lr’f log,F, where F=— (7)
red '/‘:;
i |
A =4,
A= - (8)
Ay + Ay
&=) Pa, (9)

The entropy H , ranging from 0 to 1,
represents the randomness of the scattering,
with H = 0 indicating a single scattering
mechanism  (isotropic  scattering) and
H = 1 representing a random mixture of
scattering mechanisms. For ocean and less
rough surfaces, surface scattering will
dominate, and H is near 0. For heavily
vegetated areas, the H value will be high,
due to multiple scattering mechanisms. The
anisotropy A represents the reaive
importance of the second and third
scattering mechanisms. A high anisotropy
states that only the second scattering
mechanism is important, while a low
anisotropy indicates that the third
scattering mechanism aso plays arole. The
mean apha angle a reveals the averaged
scattering  mechanisms  from  surface
scattering ( a—»0° ), volume scattering
(a ->45" ), to double bounce scattering
(a—9%° ) H ad a cealy
characterize the scattering characteristics of
a medium. Cloude and Pottier further
suggest an unsupervised classification
scheme, using the H - a plane sub-divide
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into 8 basic zones characteristic of different
scatering behaviors, as shown in Figure 2.
However, this unsupervised estimation of
the type of scattering mechanisms may
reech some limitations due to the arbitrarily
fixed linear boundaries in the H-a plane
which may not fit to data distribution,
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¢
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Entropy H

leading to noisy classification results
(Ferro-Famil et al., 2005; Lee et al, 1999-
a). Hence, in this work, we use entropy H,
anisotropy A, and mean apha angle a
directly as classification feature inputs to
the fuzzy clustering classifier which will be
described in Section 3.

Physical scattering characteristics:
29: Low Entropy Surface Scattering
28: Low Entropy Dipole Scattering
Z7: Low Entropy Multiple Scattering
26: Medium Entropy Surface Scattering
25: Medium Entropy Vegetation Scattering
Z4: Medium Entropy Multiple Scattering
23: (Not aFeasible Regionin H- OC  space)
22 : High Entropy Vegetation Scattering
21 : High Entropy Multiple Scattering

Figure2. H -& pla

3. Proposed FMLE Clustering

Including Spatial Context
3.1 Fuzzy Clustering

A fuzzy clustering algorithm yields a
multiple-dass pixel assignment where each
pixd hes membership in every class, but
with varying degree. The memberships
produce a fuzzy partition of the data that is
vievad as an unsupervised classification.
The following description is based on
(Caty, 2006; Tso and Mather, 2001). The
it features st (pixel  vectors)
\-{X,%o,....Xn} coOnsists of n vectors

xxeR" ( d is dimenson of input
festures). Assuming there are K classes,
Ihy = 11(jc.) e[0,1] is the membership of
the / th sample % in the k th class and
U=[/l,] is the associated membership
matrix. The set of cluster centers my is

deated by m = (mpmy,...,m Each

sample point x. satisfies the conservation
of the membership constraint
/1,, €0,1] ad

A
£ll«=1, fordl n

k=\

The Fuzzy K-Means (FKM) clustering

algorithm is based on minimization of the
following fuzzy objective function

(10)

[(Um)=2.L/ «PEN I»*)

*=1 1=
D is

D%(x.m) = [x-my)
g {g>\) determines the "degrees of
fuzziness' and is often chosen as q= 2.

(11)

where Euclidean  distance

The parameter

For g>1 and % * m¢, for dl i, k-, a
minimum of J; may be achieved under
the circumstance:
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(12)

e forall i

and the &k th cluster mean is calculated
from:

,for all & (13)

The FKM clustering thus performed by
iteratively applying Equations (12) and
(13). The iteration terminates when the
cluster centers my or dternatively when

the matrix elements juy cease to change
significantly.

The FKM agorithm has been
implemented  successfully in many
applications, such as pattern classification
and image segmentation. However, the
standard FKM algorithm is based on fuzzy
objective function of Equation 11 that
using Euclidean distance. This favor the
formation of hyperspherical clusters having
similar radii. An alternative algorithm, the
FMLE algorithm (Canty, 2006) allows for
ellipsoidal clusters of arbitrary extent and
is consequently more flexible. The FMLE
algorithm can be derived from FKM
algorithm by replacing Equation (12) for
the class membership /.iy by the posterior

probability P(k?x!.) for class k given the

observation x;, . That is, using Bayes’
Theorem,
1 k)P(k
> P )y = AR (14)
P(x)

P(x, k) is a class-specific probability

density function, and is assumed to follow
a  multivariate  normal  distribution

assumption. Its estimated mean m, and
covariance matrix sk are given by:
Z unr :
Zs 1 Hu
Z” (x —m Xx m, )T
8, == ——————l . {15}

C Y,
k=1.K

The prior probability of k th cluster
P(k) ,is given by:

-

L,
jpel { K

Plk) =" . (16)
n n
Thus, apart from a constant factor
independent of k , we obtain

( 1 1.
= Pl ~—exg - s
Vr ai = 2

mfl)'.s‘,.\ '(.x m ) et (17

n

i |

The FMLE algorithm consists of an
iteration of Equations (10), (15), (16}, and
(17) until class membership converges. In
this work, we use the following termination
criterion;

masc 4 — a1, )< € (18)
where & is a threshold and often chosen as

£=0.001.

Unlike the FKM algorithm, the
memberships z,, are now functions of the
directionally-sensitive Mahalanobis

distance

D, (x,m)= \(), —m, )Tsk 1z m,t)

Because of the exponential dependence on
D; of the memberships in Equation (17),
the computation is very sensitive to
initialization conditions and can even
become unstable. To avoid this problem,
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we follow the suggestion of Gath and Geva
(1989) and first obtain initial values for the
Il by preceding the calculation with the

AKM agorithm. For this purpose, in this
wok, we use only the entropy H and
men dpha angle a features to obtain

intid fiz. However, the eight zones (or

dasxs) in the H - a plane are not applied
here instead, we determine the number of
dasses based on the image content and a
ground survey information.

3.2. Spatial-contextual information based
on Probabilistic Relaxation

Bah FKM and FMLE clustering
dgoithm described above make use
exdusvdy the spectra (or intensity)
properties of the individual pixd vectors
ad spatial-contextual information of the
imege was not taken into account.

In order to incorporate spatia-
contextud  information in classification
process in this paper, we adapted the
probabiligic relaxation framework. This
idea is based on the assumption that two
neighbouring pixels are not entirely
ddidicdly independent: In  redlity,
goatidly random classification results are
nat vary likely, instead continuous areas of
oatan sizes are to be expected. It seems
deaxr that information from neighbouring
pixds should increase the discrimination
cgpabilities of the pixel-based measured
daa and thus, improve the classification
accurecy and the interpretation efficiency.
Sxh ancillaay information can  be
expressad by a neighbourhood function q,
which mugt somehow reflect the contextual
information of the neighbourhood (Canty,
2006). In order to define it, a compatibility
coefficient

p(g.k, Ih,k_,)

18 introduced, conditional
probability that pixel g falls into class k, ,

(19)

l.e., the

if a neighbouring pixel A belongs into
class k,. As mentioned before, K possible
class assignments are passible; furthermore
it is possible to incorporate a larger
neighbourhood consisting of 1. pixels.
Based on this, a neighbourhood function

a(ek) =30 3 plek k)

pli.k,) (20)

can be defined, which describes the total
joint probability over al neighbours and
their class assignments, that a pixel g fals

into class k . The probability g() gives

information about class membership of
pixedk g solely by examination of its
neighbourhood and without considering
content of the pixel itsdf.

After the FMLE clustering procedure,
the class membership  probabilities
(according to Equation 17) are known.
This alows to evaluate Equation (20) and
results in two kinds of class probabilities
for each pixels: One, gy, based only on
gpatia contextual information, and another,
fiy, based on spectral information only. A

combined spectral-spatial class
membership for the next iteration of the
FMLE is then determined by

] i .,
Hy gt — @
Z; 1 /u-"uiqii
Alternatively, this probabilistic
relaxation process can be iteratively

repeated before continue to the next
iteration of the FMLE procedure in order to
"propagate” (or to diffuse) the temporary
updated results to their surrounding pixels /
regions. In this work, we will observe the
influence of number iterations of the
probabilistic relaxation process on the
classification result. An optima number of
iterations then will be determined by
experiments.
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The compatibility coefficients can be
estimated from initially classified image.
However, FMLE classifier is an iterative
optimization classification procedure, then
does not provide optimum result from first
iteration. For this reason, in this proposed
method, we apply spatial-contextual
information  after pixel-by-pixel basis
FMLE classifier converges below a certain

threshold £. , and then continue using
contextual FMLE classifier (FMLE
following by probabilistic relaxation

iteratively) until converges below a certain
threshold £, . In this paper, we use

S, =0.005 and s, =0.001.

4. Experimental Results

The proposed method is tested using
single look complex (SLC) fully
polarimetric-SAR data acquired over
Penajam area, East Kalimantan Province.
These data were acquired in L-band by
Airborne E-SAR method on November
17", 2004. The spatial resolution of the
data used is 1.99 m and 3.0 m, in range and
azimuth respectively. The scene under
study contains different type of land
covers: forest, fields, bare soils, and water
area. Figure 3 shows a set of ground survey
information. In Figure 3, the RGB image is

formed  using Pauli decomposition
(Helmann, 2001).
For  preprocessing, we  construct

scattering matrix from single look data
(SLC) data for each polarization and then
apply speckle filtering using JS.Lee
Polarimetric Filter (Lee et ai, 1999-b). In
this experiment, a 3x3 window has been
used. Larger windows provide more
speckle smoothing but may smear fine
details in the image.

Figure 4 shows the polarimetric
parameters {5 features) extracted from
covariance matrix. The powers of each
polarization channels i.e.,,; HH, HV, and

VV intensity, are the most promising
features for  discriminating  between
different land-cover types. The HH-VV
polarimetric  coherence and HH-VV
polarimetric phase difference have also
such discrimination capability, but with
relatively lower capability than intensity
features. The HH-VV polarimetric
coherence is particularly  useful to
discriminate forest (vegetation) area from
other classes.

Figure 5 shows the features extraction
results  from Cloude's  polarimetric
decomposition. By analyzing mean alpha
angle ex and entropy H , we can observe
that open water area is characterized by
surface scattering (alpha values less than
42.5°) with low entropy, while forest area
is characterized by volume scattering
(alpha values near 45°) with high entropy
(H> 0.9). Bare soils and fields are both
characterized relatively by medium entropy
and low alpha values, and may cause low
separability between these two classes.
Anisotropy A does not provide sufficient
sensitivity for the separation of the
different land-cover types, however, may
be used for separation of the bare soil class
and field class.

We then use these two feature datasets
(i.e.,, five features of the polarimetric
parameter and three features of Cloude's
polarimetric decomposition) and combined
features of both datasets (totally eight
features) as input for FMLE classifier. Two
versions of the FMLE were applied in
these experiments:

1. Non-contextual FMLE classification. In
this case, probabilistic relaxation was
not applied in all FMLE iterations. (The
classification process is performed
using only pixel-by-pixel basis
classifier. See Figure 1)

2. Contextual FMLE classification. In this
case, 4-neighbourhood probabilistic
relaxation was applied with 1, 3, 5, 7,
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ad 9 iterations. (The classification

process is first performed using pixel-by-

pixd basisclassifier, then continued using
gpatid-contextua classifier)

The classfication results of the non-
contextud FMLE systemsare shown in Fig 6
(& ¢, and €). Wecan observethat polarimctric
paander features alone can provide
reasonable result, but with some
misdlassfication between forest, fields, and
bere snils For exampl e, the bare soil areasin
upper left comers of the image (see Figure 6-
a) were erroneoudy classified as forest. On
de other hand, Cloude's decomposition
fedures can identified accurately these bare
il aress (see Figure 6-¢) and enhanced the
discrimination between forest and non-forest
aes By combining these two festure
daags the discrimination of different land
oove types can be improved, thus giving
bdter classification result (see Figure 6-€).

As comparison, the classification results
wing standard FKM  clustering (using
Eudideen distance) are also presented in
Fgue 6 (b, d, and O- in al results, we
cosaved that the FMLE clustering perform
conggently better than the FKM clustering.
Sme misclassification between forest,
fields, and bare soilsare occurred evidently.

Inevicd Jourd of Ramate Sendng and Earth Sdences Vdl. 5, 200S

and water class at river areas can not be
accurately identified by FKM clustering.

Theclassification resultsof the contextual
FMLE systems are shown in Figure 7. In
Figure 7-b, 1 iteration of the probabilistic
relaxation have been used. Comparing with
non-contextual result (Figure 7-a), although
more homogeneous result is obtained, but the
improvement is marginal. The classification
results get more homogeneous (suppress
more "salt and pepper" effect in
homogeneous areas) by increasing the
number of iteration. However, too many
iterations lead to a widening of the effective
neighbourhood of a pixel to such an extent
that fully irrelevant spatial information
falsfies the final classification results. It can
also be confirmed in Figure 7-e (with 7
iterations) and Figure 7-f (with 9 iterations),
which some erosion of the object boundaries
(particularly when the objects are small in
size) are occurred evidently. We conclude
that the best results are obtained with 3-5
iterations (Figure 7-c or Figure 7-d). as it
provide homogeneous classification result,
but still preserve edge and other fine
structures.



B Water

B Forest
Fields

W  Bare
soils

Figure 3. Ground Survey Information

a) HH Intensity (Polarisation b HV Intensitv (Pelarisation power)  ¢) VV Intensity (Polarisation power}
powerd

d) HH-VV Polarimetric Coherence ¢) HH-VV Polaimetric Phase
Difference

Figure 4. Polarimetric physical parameter features extracted from Polarimetric Covariance Matrix.
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a) Entropy 1 b) Anisoropy A ¢) Mean Alpha Angle QU

Figure 5. Features extracted from Cloude's decomposition model

B water
B Forest
Fields
B Bare
soils
al Usmg FMLE r:.iuslring with mput; 5 by Using FKM clustering with input: § polarimetric
larimetiic parameters (5 features) parameters {5 features
B Water
B Forest
Fields
B Bare soils
¢ Using FMLE clustering with input. Cloude’s d) Using FKM clustering with mput: Cloude’s
olarimetric decomposition (3 features} polarimetric decomposition (3 features
el B Water
B Forest
Fiekls
®  Bare
so1ls
e} Using FMLE clustering with input: f) Using FKM clustering with mput:
polanmetiic parameters + Cloude’s polarimetric parameters + Cloude’s
pelanmetnic decomposition {8 features) polarimetric decomposition (¥ features)

Figure 6. Classification results using non-contextual FMLE clustering with combined
features of Cloude's polarimetric decomposition and polarimetric physical
parameters. These results are obtained without spatial-contextual information.
(Classification results using FKM clustering are also presented as comparison)
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B Water

B Fovest
Fieids

B Bare
so1ls

a) Using FMLE clustering without contextual b) Using FMLE clustering with contextual
information information 1 iteration

Water
Forest
Fields

soils

¢} Using FMLE clustering wif} contextaal d) Using FMLE clustering with contextual
infermation: 3 iteraticns information: 3 iterations

¢) Using FMLE clustering with contextual ) Using FMLE clustering with contextual
information: 7 iterations information: 9 iterations

Figure 7. Classification results using FMLE clustering with combined features of Cloude's
polarimetric decomposition {3 features) and polarimetric physical parameters (5 features).
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5. Concluson

An dternative method for unsupervised
dasdfication of polarimetric-SAR data has
bemn proposed. The method was designed by
integrating the combined features extracted
from polarimetric covariance matrix and
Cloudds polarimetric decomposition with
contextud FMLE classifier.

The proposad method has been tested on a
fuly polarimetric, single look complex E-
AR (L-Band) data acquired on the area of
Pongan, East Kalimantan, Indonesia.
Expaimentd results show that the proposed
method improves land-cover discrimination
peformance, and provides robust and
homogeneous classification results but still
presarving edge and other fine structures.
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