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Abstract. Remotely sensed vegetation indices (VI) such as the Normalized Difference 

Vegetation Index (NDVI) are increasingly used as a proxy indicator of the state and condition 

of the land cover/vegetation, including forest. However, the Enhanced Vegetation Index 

(EVI) on the outcome of forest change detection has not been widely investigated. We 

compared the influence of using EVI and NDVI on the number and time of detected changes 

by applying Breaks for Additive Seasonal and Trend (BFAST), a change detection algorithm. 
We used MODIS 16-day NDVI and EVI composite images (April 2000-April 2012) of three 

pixels (pixels 352, 378, and 380) in the tropical peat swamp forest area around the flux 

tower of Palangka Raya, Central Kalimantan. The results of BFAST method were compared 

to the Normalized Difference Fraction Index (NDFI) maps and the maps were validated by 

the hotspot of the Infrastructure and Operational MODIS-Based Near Real-Time Fire 
(INDOFIRE). Overall, the number and time of changes detected in the three pixels differed 

with both time series data because of the data quality due to the cloud cover. Nonetheless, 

we found that EVI is more sensitive than NDVI for detecting abrupt changes such as the 

forest fires of August 2009-October 2009 that occurred in our study area and it was verified 

by the NDFI and the hotspot data. Our results demonstrated that the EVI for forest 

monitoring in the tropical peat swamp forest area which is covered by intense cloud cover is 
better than that NDVI. Nonetheless, further research with improving spatial resolution of 

satellite images for application of NDFI is highly recommended.   
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1 INTRODUCTION 

The detection of forest changes is 

useful for many applications such as land-

use changes, habitat fragmentation, rate of 
deforestation, etc. It is also important to 

identify the spatial and temporal trends in 
forest management (Healey et al., 2005). 

Natural changes can be the result of fires, 

insect attack, and drought whereas 

anthropogenic disturbances results from 
human activities such as deforestation, 
urbanization and farming (Verbesselt et al., 

2010a). There is now an ever growing 

interest in information about the condition 

of ecosystems, especially it is caused by 

potentially devastating phenomenon such 
as global warming, biodiversity loss, and 

carbon accumulation in the atmosphere.  

Satellite vegetation index products are 

generally applied in a wide variety of 

applications to observe and distinguish the 
Earth's vegetation cover from space (Jiang 
et al., 2008).  Vegetation properties 

predicted from remote sensing data are 

often employed as proxy indicator of land 

cover change. Sensor recorded radiances 

are transformed to vegetation indices that 

are known to possess a strong positive 

correlation to vegetative cover of the land 

surface. The key advantages of the 

vegetation indices over single-band 
radiometric responses in their ability to 

reduce appreciably the data volume for 

processing and analysis, and their innate 

capacity to provide information that are 

otherwise not available from any single-
band (Coppin et al., 2004). However, no 

single vegetation index exist that can 

summarize completely information in 

multidimensional spectral data space 
(Coppin et al., 2004). 

The most challenging task in the use of 

vegetation index is the choice of vegetation 
index models for the purpose of change 

detection. The suitability of any vegetation 

index for change analysis would seem 

therefore, to be case and purpose 

dependent (Wallace and Campbell, 1989).  
Although Normalized Difference Vegetation 

Index (NDVI) have started the most widely 

used vegetation index for change detection 

analysis, it is generally recognized to be 

vulnerable to changes in background 

reflectance and to saturate at medium to 
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high leaf area index (LAI), resulting in 

insensitivity to seasonal changes (Sjostrom 
et al., 2011). The introduction of Moderate 

Resolution Imaging Spectroradiometer 

(MODIS) produced the development of the 

Enhanced Vegetation Index (EVI) which 
can strengthen the vegetation signal by 

minimizing influences from the atmosphere 

and canopy background, and is able to 

improve sensitivity in high biomass regions 
(Sjostrom et al., 2011). Nonetheless, 

comparative studies which assess the 
suitability of NDVI and EVI in change 

detection for different land cover types is 

lacking in the literature. 

In this research, Breaks For Additive 

Seasonal and Trend (BFAST), which is a 

change detection algorithm proposed by 
Verbesselt et al. (2010a, 2010b), will be 

applied to MODIS 16-day NDVI and EVI 

composite images for a location of MODIS 

flux tower in Indonesia. Principally, BFAST 

combines the decomposition of time series 

into trend, seasonal, and remainder 
components with methods for detecting 
change within time series (Verbesselt et al., 
2010a, Verbesselt et al., 2010b). BFAST 

method gives information about when the 

forest changes happen in those locations.  

It does not give information about the 
details information of the changes. BFAST 

method still needs to be optimized for 

deforestation monitoring by improving the 

capacity to deal with high cloud cover. The 

objective of this research was to compare 

the sensitivity between EVI and NDVI for 
analysing the tropical forest changes using 

the BFAST method. The result of BFAST 

method will be verified by the NDFI 

Landsat images and hotspot data in the 

Palangka Raya, Indonesia from April 2000 

to April 2012.
   

 
2 MATERIAL AND METHODS 

2.1 Study area 

For supporting research, a 

micrometeo-rological tower (flux tower) in 

Palangka Raya, Central Kalimantan 
Province was chosen (Figure 1). This study 

was conducted in a tropical peat swamp 

forest area around Palangka Raya. A flux 

tower site in Palangka Raya was chosen 

based on the availability of clear Landsat 

images and its high potential of disaster 
hazard triggered by forest changes. The 

flux tower used eddy covariance methods 

to measure the exchange of carbon dioxide 

(CO2), water vapour, and energy between 

terrestrial ecosystems and the atmosphere 
(NASA, 2012). Palangka Raya flux tower 

representing a tropical peat swamp forest 

area was selected for the study. The 

coordinate position of the Palangka Raya 

flux tower in UTM projection Zone 50 

South is 170751 m and 9741010 m, 

respectively. The information about flux 

towers can be seen in http:// daac. ornl. 

gov/cgi-bin/ MODIS/ GR_col5_1/ corners. 

1.pl?site= fn_idpalaya& res=250m. 

 
2.2 Data descriptions 

2.2.1 The MODIS EVI and NDVI (MOD13Q1 

collection 5) 

The 16-days NDVI and EVI composites 

with 250 m resolution (MOD13Q1 

collection 5) for Palangka Raya site were 

acquired for the period covering 6 April 

2000 to 6 April 2012 (277 series of data). 

The ASCII files of this site consist of NDVI 

and EVI data from 784 pixels of the study 

area. For applied the BFAST method, we 

focused on the 3 pixels in the centre 1 km
 

pixels in Palangka Raya flux tower which 

were the pixels 352, 378, and 380 (Figure 

2). Three pixels are chosen by randomly 

which would be used as a example of data 

extraction by BFAST Method. The BFAST 

method was only detect the abrupt changes
 

of the forest based on a pixel. Three pixels 

of MODIS data will help us to decide when 

the abrupt changes happen. Hence, we do 

not need to process all of the Landsat 

images in the selected time period (12 

years). 

In other words, the forest changes in 

the study area will be determined based on 

all the pixels from the whole area by apply 

the NDFI method to the Landsat images. 

The MODIS sensor was consisted of 36 

spectral bands spreading from the visible 

to the thermal infrared wavelengths (from 

0.405 to 14.385 µm). The MODIS data were
 

available in real time as 16-day EVI and 

16-day NDVI. The EVI and NDVI MODIS 

data can be downloaded in ftp:// daac. 

ornl. gov/ data/modis_ascii_subsets/ C5_ 

MOD13Q1/data/.
 

The NDVI (Rouse et al., 1973) and EVI 

are formulated as (Hui Qing and Huete, 
1995): 

 

           
              

           

    (1) 

 

        
          

                            
  (2) 

Where   is a soil adjustment factor, and    
and    are coefficients used to correct 

ftp:// daac. ornl. gov/ data/modis_ascii_subsets/
ftp:// daac. ornl. gov/ data/modis_ascii_subsets/
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aerosol scattering in the red band by the use 
of the blue band (Huete et al., 1997). The 

     ,      and      represent reflectance at 

the blue (0.45-0.52μm), red (0.6-0.7μm), 

and Near-Infrared (NIR) wavelengths (0.7-

1.1μm), respectively. In general, G=2.5, 

C1=6.0, C2=7.5, and L=1 (Huete et al., 

1997). 
 

 

2.2.2 Landsat images 

For multi temporal analysis, a series of 

10 (ten) images was obtained from 

Landsat-ETM+ L1T (Path-118/Row-062). 

The temporal images obtained were from 

the data in June 2001, May 2002, April 
2004, July 2005, August 2006, July 2007, 

May 2008, June 2009, April 2010 and 

June 2011. The Landsat images can be 

downloaded from http://glovis.usgs.gov/.

 

 
Figure 1. The location of the flux tower in Palangka Raya (Segah et al., 2010). 

   
 

 

 
Figure 2. The 3 pixels in the centre 1 km pixels of Palangka Raya flux tower

http://glovis.usgs.gov/
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2.2.3 The hotspot data 

The hotspots data was produced by 

Indofire.  Indofire was an operational near 

real-time (NRT) satellite-based monitoring 

system for fire monitoring and management 

which covers the whole of Indonesia and 
was accessed freely through the internet 
(Dawbina et al., 2011). Indofire was an 

automatic real-time satellite processing of 

fire information based on the FireWatch 

MODIS-based fire hotspot detection system 

(http: //firewatch.landgate.wa.gov.au/) 
(Dawbina et al., 2011). The validation of the 

hotspot was done in Central Kalimantan 

and it showed that the hotspots data had 

high correlation to the forest fires which 

detected through the satellite images (Vetrita 
et al., 2012).  Partners in the Indofire project 

included Indonesian National Institute of 

Aeronautics and Space (LAPAN), Ministry of 

Forestry (Kementerian Kehutanan/ 

Kemenhut), Ministry of Environment 

(Kementerian Lingkungan), Ministry of 

Education within Indonesia and the Western 
Australian Land Information Authority 
(Landgate) in Australia (Dawbina et al., 

2011). The data consisted of 12 years data 

from April 2000 to April 2012. The data can 

be accessed via internet from http:// 

indofire.landgate.wa.gov.au/indofire.asp. 
 

2.3 The BFAST method for detecting the 

forest changes 

Principally, BFAST was done by an 
additive decomposition model (Verbesselt et 
al., 2010b).   Decomposition models were 

generally used to define the trend and 

seasonal factors in a time series (PSU, 

2012). The main objective of decomposition 

was to predict the seasonal effects which 

can be used to present seasonally adjusted 

values. The seasonal effect from a value will 
be removed during the seasonally adjusted 

values, so the trends will be seen more 

clearly. The additive model was useful when 

the seasonal variation was relatively 

constant over time (PSU, 2012). 
Additive decomposition can be 

calculated by the general model (Verbesselt 
et al., 2010b): 

 

                                              (3) 

 

Where Yt is the observed data at time t, Tt is 

the trend component, St is the seasonal 

component, and et is the remainder
 

component. The remainder component is the 

residual variation in the seasonal and trend 

components.
  

The trend component (Tt) is assumed as 

a linear function with break point: t *,..., 
tm

*and define t0
*= 0, so that (Verbesselt et 

al., 2010a): 

 
         

 
       (4) 

  

For t*
j-1< t ≤ tj* and where j = 1. Intercept (αj) 

and slope ( j) can be used to calculate the 

magnitude of the abrupt change and slope of 
the gradual change between detected breaks 
points (Verbesselt et al., 2010a). The 

magnitude of an abrupt change at a peak-

points can be calculated by the difference 
between Tt at t*

j-1,..., tj
*. So that: 

 

                α           
 
    (5) 

  

And slopes of the gradual changes before 

and after breakpoints are (         
 
 . 

A piecewise linear seasonal model was 

implemented based on seasonal dummy 

variables to fit the seasonal component 
(Verbesselt et al., 2010a). The seasonal 

breakpoints was calculated by τ1#,..., τp#  and 
again express τ0

#  and τ#
p+1= n. St is a 

harmonic model for τ#
j-1< t ≤ τj# (j = 1,...,p) 

and K the number of harmonic terms: 

 

         
 

   
     

    

 
           (6) 

 

Where the unknown parameters are the 

segment-specific amplitude      and phase 

      and f is the (known) frequency (i.e. f = 

23 annual observations for a 16-days’ time 

series). The remainder component (also 

known as the residual) is what remains after 
the seasonal and trend components of a 

time series have been predicted and 

removed. In principle, the optimal position 

and number of breakpoints can be defined 

by minimizing the residual sum of squares 

linear of the regression model.   The
 

estimation of parameters will be performed 

by iterative procedure until the position and 

number of breakpoints is unchanged 

(Verbesselt et al., 2010b).
 

The BFAST methods are available in the 

BFAST package for R from CRAN (http:// 

cran.r-project.org/package=bfast) (Verbesselt 

et al., 2010b). In this research, the BFAST 

was used to process the satellite image time 

series from the MODIS 250 m 16-days 

composite gridded vegetation index products 

(MOD13Q1). The processing data in this 

research was divided into four parts.  First,
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the BFAST method was applied based on the 

EVI and NDVI time-series data. The BFAST 

method decomposed the fits trend and 

seasonal change' stimeseries component.  

Second, the analysis of the phenological 

changes and abrupt changes was applied for 
the results of BFAST in all components. The 

number of phenology changes was displayed 

by seasonal components. The number of the 

abrupt changes was displayed by trend 

components. Third, the signal-to-noise ratio 
(∆c1) has an influence on the RMSE (Root 

Mean Square Error) for detecting the 

number of phenological changes (Verbesselt 
et al., 2010b). 

This implied that the higher seasonal 

amplitude (a) of the time series or lower 
noise level (σ) results indicated more 

accurate detection of the number of 

phenological changes. The signal-to-noise 

ratio (∆c1) can be derived by dividing the 

seasonal amplitude (a) from seasonal 

component to the noise level (σ). Fourth, 
evaluation of the sensitivity and reliability 

between the NDVI and EVI time-series data 

was the most crucial part in this 

study. Evaluation of sensitivity and 

reliability of data was conducted with an 
investigation upon quality of data which was 

used. This was related to the missing data 

that might be lost during the process of 

masking and cleaning the noise of the data 

in the BFAST before the data 

interpolation. The high number of the 
missing data was equal with the declining 

quality of interpolation results. The BFAST 

model was processed by using R 

programming. 

 

2.4 NDFI for identifying of the forest 
degradations 

In addition to the calculation of signal-

to-noise ratio and number of gaps (NA), the 

accuracy of the BFAST was proven by using 

other image's satellites. The BFAST method 

provided estimation when the forest changes 

happen in a site for those periods of 

time. After the time of the disturbances was
 

known, another set of data was compared to 

the result, to verify whether the detection 

was correct or not. The ground and aerial 

surveys as well as finer spatial and spectral 

resolution imagery can be detail
 

investigation in estimated locations 

(Verbesselt et al., 2010a).  In order to 

achieve this objective, other satellite images 

i.e. Landsat data, were used to verify the 

BFAST results.
 

There were some steps to be performed 

in NDFI application.   First, the pre-

processing was done before the Landsat 

images were used for NDFI analysis. The 

pre-processing data aimed to reduce the 

atmospheric disturbance due to cloud cover. 

It consisted of stacking the Landsat images 

and removing the cloud cover from the
 

images.  Second, the candidate of 

Endmembers was derived from the Landsat 
images for three types of Endmembers: GV 

(Green Vegetation), NPV (Non-Photosynthetic 

Vegetation), Soil and Shade based on the 

Landsat images.  Once the candidates of 

Endmembers were chosen for the four types 

of Endmembers, we calculated the average 

from these the candidates of Endmembers.
 

Third, the fraction images for every 

Endmembers were calculated by using SMA 

(Spectral Mixture Analysis) model. Fourth, 

the GV shade was calculated by using 

fraction images GV and Shade. Finally, the
 

calculation of NDFI was done by using the 

fraction image of GV shade, Shade and Soil. 

NDFI can be determined by using the 

following formula (Souza et al., 2003): 

         
                    

                    
 (7) 

 

where GV shade, which is the shade 
normalized GV, is given by: 

 

            
   

            
          (8) 

 

The NDFI values range from -1 to 1. 

Ideally, the NDFI value in undamaged forest 

is expected to be high (i.e., about 1) because 

of the combination of high GV shade (i.e., 

high GV and canopy Shade) and low NPV
 

and Soil values (Souza et al., 2005). In the 

case of the forest degraded, the NPV and Soil 

fractions are expected to increase, lowering 

the NDFI values relative to intact forest. 

Therefore, the NDFI has the potential to
 

enhance the detection of forest degradation 

caused by selective logging and burning 

(Souza et al., 2005). The analysis of NDFI 

result was conducted by visual assessment 

the map as the whole area for every month
 

and calculation of average NDFI for the 

subset of three pixels (352, 378 and 380). As 

the final part, the result of NDFI will be 

overlaid by the hotspots data of Indofire for 

validating the results. 
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3 RESULT AND DISCUSSION 

3.1 Detection of forest changes using 

BFAST method 

The application of BFAST method to the 

MODIS EVI and NDVI time series for the 

flux tower pixels generated estimates of the 
time, number and type of the significant 

changes. The only site with detected change 

in the seasonal component was in the pixel 

352 and this was only found in the NDVI 

data (Figure 3). The seasonal changes were 

detected by NDVI in February 2008, August 
2009, and January 2011. There were also 

divergences in the number and time of 

abrupt changes in the trend component 

from the EVI and NDVI data for pixel 352 

(Figure 3). While the analysis of the EVI data 
estimated four the abrupt changes occurring 

in May 2002, November 2005, September 

2007, and September 2009, the NDVI data 

characterized the changes in March 2004, 

March 2009, and May 2010 as abrupt 

changes. 

The details of the abrupt changes at 

pixel 352 which detected in the trend 

component are shown in Figure 4. The 

highest magnitude of changes for EVI and 

NDVI, indicated by trend component (Tt), 

were - 0.40 (September 2009) and 0.20 (May
 

2010), respectively. According to trend 

component of EVI, there was a big 

decreasing of EVI in September2009. Other 

negative amplitudes of abrupt changes can 

be observed in May 2002, November 2005.
 

For NDVI, it has only one negative abrupt 

change in March 2004. We can say that 

most of the abrupt changes in EVI have 

negative amplitude which represented to the 

decreasing of vegetation covers.
 

 
Figure 3. Detected changes (---) in Seasonal (St) and Trend components (Tt) of 16-days EVI (left) and 

NDVI (right) time series (data) extracted from a pixel 352 Palangka Raya flux tower. 

 
Figure 4. The abrupt changes which detected in the trend component of the pixel 352 for EVI (top) and 

NDVI (bottom) 
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In the pixel 378, there were six abrupt 

changes in the trend component of the EVI 

data (March 2001, September 2003, October 

2004, March 2006, September 2007 and 

October 2009) as against four abrupt 

changes (August 2002, January 2004, 

September 2008, September 2010) 

estimated from the NDVI data (Figure 5).
 

There was no seasonal change in both of 

datasets. 

 The highest magnitude of changes in 

EVI and NDVI were 0.20 (March 2001) and - 

0.10 (September 2010), respectively (Figure 

6). The positive magnitudes of changes in 
EVI indicated the re-growth of vegetation in 

March 2010. NDVI produced a negative 

magnitude of changes which can be used to  

 

 
Figure 5. Detected changes (---) in trend components (Tt) of 16-days EVI (left) and NDVI (right) time 

series (data) extracted from the pixel 378 Palangka Raya flux tower 

 

 
Figure 6. The abrupt changes in the trend component of the pixel 378 for EVI and NDVI; The red circle 

shows the interpolated data from the sequential series of missing data at pixel 378 
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indicate the forest degradation in September 

2010. In the EVI result, there were three 

negative magnitudes of the abrupt changes 

which occurred in October 2004, March 

2006 and October 2009. On the other hand, 

NDVI showed that three negative 
magnitudes of abrupt changes were 

occurred in August 2002, January 2004, 

and September 2010. 

Based on the interpolated data of EVI 

and NDVI in pixel 378, the data quality was 

low here (Figure 6). As result of 
interpolation data, there were many gaps in 

the sequential series of data which can be 

indicated by the flat pattern of data (red 

circle in Figure 6). In pixel 380, there were 

difference in the number and time of the 
detected changes in the trend component of 

each site from both of EVI and NDVI. The 

BFAST analysis on the EVI indicated three 

abrupt changes in the trend component 

occurring in September 2007, April 2009 

and June 2010 and revealed five abrupt 
changes which occurred in April 2008, 

October 2003, February 2005, August 2009 

and August 2010 in NDVI (Figure 7). For 

pixel 380, there was no change in the 

seasonal components in both of the EVI and 
NDVI time series (Figure 7). 

The highest magnitude of changes in 

the trend components were 0.10 for EVI 

(September 2007) and NDVI (February 

2005) (Figure 8). Based on Figure 8, it can 

be observed that one positive of abrupt 
changes is detected in EVI (April 2009) and 

one positive of abrupt changes is detected in 

NDVI (August 2009). 

For all the pixel (352, 378, 380), the 

seasonal amplitude and the noise level of 

the MODIS EVI data sets in the pixel 352, 

were found be lower than MODIS NDVI data 

sets (Table 1). Consequently, EVI of the 

pixel 352s had lower of signal-to-noise ratio 
than NDVI. For the pixel 378, EVI has 

higher seasonal amplitude and the signal-

to-noise ratio than NDVI. The pixel 380 

shows that EVI and NDVI had the same 

seasonal amplitude, the noise level and the 

signal-to-noise ratio. Both of datasets were 
observed in the number of missing data. In 

this case, EVI had a lower the number of 

missing data than NDVI. 

For the abrupt changes, NDVI could not 

detect the abrupt changes from forest fire in 
2009 at the pixel 352. On the other hand, 

EVI showed the occurrence of the abrupt 

changes in September 2009.  In pixel 378, 

EVI can detect the forest fire event in 

September 2009.  At pixel 380, there was 

disagreement of the abrupt changes in 2009 
for EVI and NDVI. In pixel 380, the abrupt 

changes of EVI detected in April 2009 as a 

positive magnitude of change which 

indicates the vegetation growth. Conversely, 

NDVI detected a positive magnitude of 
changes which happens in 2009.  The  

positive magni tude of changes indicated the 

growth of vegetation. In fact, the big forest 

fire occured in the study area from August 

2009 to October 2009 (WWF, 2009). The 

forest fires of Palangka Raya can aslo be 
proved by hotspots data from Indofire of 

MODIS satelite (Figure 9). The BFAST result 

based on NDVI at pixel 380 showed 

 
Table 1. SEASONAL AMPLITUDE (a), NOISE LEVEL (σ), SIGNAL-TO-NOISE RATIO (∆c1) AND NUMBER 

OF MISSING DATA (dg) OF THE EVI AND NDVI TIME SERIES DATA OF THE THREE PIXELS 

PIXELS 
a σ ∆c1 = a/ σ Missing data 

EVI NDVI EVI NDVI EVI NDVI EVI NDVI 

352 0.05 0.10 0.15 0.20 0.33 0.50 119 129 

378 0.10 0.05 0.20 0.15 0.50 0.33 111 127 
380 0.05 0.05 0.15 0.15 0.33 0.33 126 135 

 
Figure 7. Detected changes (---) in trend components (Tt) of 16-days EVI (left) and NDVI (right) time 

series (data) extracted from the pixel 380 of Palangka Raya flux tower 
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Figure 8. The abrupt changes in the trend component of the pixel 380 for EVI (top) and NDVI (bottom). 

 
the discrepancy result to the hotspots data. 

Based on the pixel 380, the negative 

magnitude of changes should be found in 

September 2009 because of the forest fires, 

but BFAST result based on NDVI shows the 
opposites results. 

The pixel 378 had the lowest of 

missing data after filtering process (Table 1). 

Removing the noise (e.g. clouds and sun 

angle) from the satellite images satellite 

needed more attention due to the data 
quality (Holben, 1986). Before application 

of BFAST method, filtering and cleaning of 

data was done by using the reliability 

information in the MODIS product. 

Consequently, some values were missing 
because of cloud removal. Missing data, 

after filtering process, was assumed to be 

zero. In this research, missing data were 

replaced by linear interpolation (Verbesselt 
et al., 2006). Though pixel 378 had the 

lowest of the missing data, the quality of 
the interpolated data in pixel 378 was 

lower than others. Lower quality data of 

pixel 378 can be observed by few flat 

patterns within the data (see Figure 6). The 

flat pattern implied the limitation of linier 

interpolation method to fill the gaps due to 
the high missing data. One disadvantage of 

the linear interpolation was a tendency to 

force the data into a linear (straight line) 

(Meijering, 2002). The linier interpolation 

used the data which were located at before 

and after the data gaps for filling the data 

gaps. Consequently, the larger data gaps 

mean the lower accuracy of estimated data. 

The linier interpolation was applied on 
these pixels, but this method might be not 

applicable when the datasets had large 

missing data. Not only the large of missing 

data, but also the position of missing data 

could influence the accuracy of estimated 

data.  When the data gaps consisted of 
large missing data and located in the 

sequential series, the linear interpolation 

might lead to low quality of the interpolated 

data. As a result, higher number of the 

abrupt changes to the trend component of 
BFAST did not guaranty more accurate the 

model. The further analysis of the data 

quality and other supported data are still 

needed to evaluate the accuracy of BFAST 

results. 

A closer look at the number of missing 
data points indicates that the EVI had 

smaller number of missing data than the 

NDVI time series of three pixels (Table 1). 

Missing data can influence the result of 

model. Since the study area had high cloud 
cover and dense vegetation, EVI can reduce 

the effect of atmospheric disturbance and 
canopy by using blue band (Dietz et al., 
2007, Sjostrom et al., 2011, Huete et al., 

1997). The fewer missing data may
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Figure 9. Overlay the hotspots data to the NDFI result for 2009 

 

indicate that EVI data might be more 
accurate to reflect the condition of the forest 

in comparison with NDVI data. As a result, 

most of EVI analyses could detect the forest 

fire in 2009 as the abrupt changes in trend 

component of BFAST results. 

 
3.2 NDFI for identifying the forest 

degradation 

Because of the cloud cover problem in 

the study area, analysis of the NDFI for this 

area cannot be applied for every month 
continuously in 12 years period. In this 

research, the Landsat images were used to 

calculate NDFI, but the calculation was only 

done for one month to represent one year 

NDFI. The most crucial factor for the 

successful application of SMA models 
depends on the identification of the nature 

and number of pure spectra (i.e., 

Endmembers). Four types of Endmembers 

were derived for NDFI such as: GV, NPV, 

Soil and Shade. Next, these Endmembers 
will be used to calculate the fraction of 

images by using spectral mixture model. An 

example of results from SMA model can be 

seen in the Figure 10. 

The NDFI results for every year are 

shown in Figure 11. If a pixel has a value of 
NDFI which close to one, it means that the 

pixel has high green vegetation and canopy 
shade but low in NPV and soil (Souza et al., 

2003). NDFI results show that the 

vegetation cover was decreased after May 

2002. From the May 2003, it can be 

observed by the lower NDFI values in the 
middle part of study area (blue colour in 

Figure 11). April 2004 contained a lot of 

clouds and probably affects the quality of 

the result. Increasing of vegetation occurred 

in April 2004, especially in the northeast 

part of the study area. However, July 2005 
and August 2006 show a quite similar 

pattern to map of May 2003.  So it could be 

said that April 2004 had lower accuracy 

than others due to the cloud cover. The 

biggest forest changes occurred after June 
2009. It can be seen based on comparison 

of maps from May 2008 to June 2011. 

However, April 2010 also had high cloud 

cover. Though April 2010 had lower quality 

to show this forest changes, we can observe 

in June 2011 whether there was the forest 
changes in 2009. April 2010 and June 2011 

indicated that a big forest disturbance 

happened between June 2009 and April 

2010. 

Based on the results of BFAST and 
NDFI, it shows that the abrupt changes 

were occurred in the study area, especially 

in the month after June 2009. For the detail 

analysis about the results between BFAST 

and NDFI, the Indofire hotspots data were 

used to verify whether the fire forest
 

disaster occurred in this area (Figure 11). It 

recorded that there were many hotspots in 

this area which were triggered by fire forest.  

It was occurred between August 2009 and 

October 2009. 
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The qualitative comparison among the 

NDFI results from May 2008 to July 2011 

shows NDFI has the values close to -1 after 

June 2009 (Figure 10). A low of NDFI values 

(close to -1) related to a high of canopy 

damage and forest disturbance (e.g. 
deforestation, forest degradation) which 

occurs between June 2009 and October 
2009 (Souza et al., 2003). Based on the 

hotspot data, there was forest fire in the 

study area between August 2009 and 

October 2009. According to the EVI data, 
BFAST method estimated that there was a 

negative magnitude of the abrupt changes 

in September 2009 for the pixel 352 and a 

negative magnitude of the abrupt changes 

in October 2009 for the pixel 378. A 
negative magnitude of change in trend 

component of BFAST indicated the 

degradation of vegetation cover (Verbesselt 
et al., 2010a). We can say that there was an 

agreement of the forest changes between 

NDFI and BFAST results because both NDFI 

and BFAST detected the forest fires in 

August 2009 – October 2009 as the abrupt 

changes.  

Based on the number of gaps (Table 1) 
and verified by the hotspot data (see Figure 

9), the use of EVI is more powerful than 

NDVI to detect the abrupt changes in the 

study area.  Thouh the noise level was 

higher than 0.15 and seasonal amplitude 
lower than 0.10, EVI was proven to be able 

to detect the occurrence of the forest fires 

from August 2009 to October 2009 as the 

abrupt changes in trend component of 

BFAST. In addition to NDVI, EVI might be 

applied in application of BFAST method 
especially in the case of the tropical peat 

swamp forest area (dense vegetation) and 

intense cloud cover area, for instance in 

Indonesia.

 

 
Figure 10. SMA results for Gvshade and NPV (left), soil and RMSE (right) result based on data from 

June 2001 
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Figure 11. NDFI results for every year from Landsat images in 2001–2011 

 
4 CONCLUSIONS 

In the case of tropical peat swamp forest 

area and high cloud cover, EVI can minimize 

the influence of atmospheric disturbance 

and vegetation density resulting in the lower 

of the missing data during the data filtering. 
The sensitivity of the EVI has been proven to 

be able to detect the presence of abrupt 

changes than the NDVI does. 

NDFI was found to be able to display 

the decreasing in NDFI values in that period 
as the forest degradation event or the 

canopy damage. There was a similar trend 

found among EVI, NDVI and NDFI values 

which shows the decreasing of vegetation 

cover in the study area during 12 years. The 

decreasing of vegetation cover indicates the 
increase of the forest damages in the study 

area.  For the abrupt changes detection, 

NDFI can be used to support the BFAST 

result. 

There were many data which removed 
during the filtering and cleaning data.  

Though the bilinear interpolation was 

applied to fill the gaps, the quality of BFAST 

detection was reduced by this problem.  In 

the further research, a new development of 

BFAST method was proposed to use for near 
real-time disturbance detection using 

satellite image time series. 

For the cloud cover, the result of the 

SMA model could be the important issues 

for NDFI analysis. Though we chose the
 

correct spectral band for determining of the 

endmembers, the fraction images of SMA 

could be affected by the quality of satellite 

images. The increasing of spatial resolution
 

of satellite images will improve the result of 

NDFI. 
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