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Abstract.  Cloud cover has become a major problem in the use of optical satellite imageries, 

particularly in Indonesian region located along equator or tropical region with high cloud cover almost 

all year round. In this study, a new method for cloud and cloud shadow detection using Landsat 

imagery for specific Indonesian region was developed to provide a more efficient and effective way to 

detect clouds and cloud shadows. Landsat Top of Atmosphere (TOA) reflectance and Brightness 

Temperature (BT) were used as inputs into the model. The first step was to detect cloud based on 

cloud physical properties using albedo and thermal bands, the second step was to detect cloud shadows 

using the Near Infrared (NIR), and Short Wave Infrared (SWIR) bands, and finally, the geometric 

relationships were used to match the cloud and cloud shadow layer, before proceeding to the 

production of the final cloud and cloud shadow mask. The results were then compared with other 

method such as tree base cloud separation. It showed that method we proposed could provide better 

result than tree base method, the accuracy result of this method was 98.75%. 
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1 INTRODUCTION 

Many Landsat images especially in 

Indonesia as tropical area were inevitably 

covered by cloud(Asner, 2001). The 

presence of clouds and their shadows 

complicated the use of data in the optical 

domain from earth observation satellites. The 

brightening effect of the clouds and the 

darkening effect of cloud shadows affected 

data analyses such as inaccurate atmospheric 

correction, biased estimation of Normalized 

Difference Vegetation Index (NDVI) values, 

error in land cover classification, and false 

detection of landcover change. Therefore, 

clouds and cloud shadows were significant 

sources of noise in the Landsat data, and 

their detection was an initial step for further 

analyses (Arvidson et al., 2001; Irish, 2000; 

Simpson and Stitt, 1998). Generally, clouds 

could be divided into two categories: thick 

opaque clouds and thin semi transparent 

clouds. The thick opaque clouds were 

relatively easier to identify because of their 

high reflectance in the visible bands. While, 

the identification of thin semi-transparent 

clouds became more difficult since the 

signals involved both from clouds and the 

surface underneath (Gao and Kaufman, 

1995; Gao et al., 1998, 2002). 

Due to the high spectral variability of 

clouds, cloud shadows, and the earth's 

surface, automated accurate separation of 

clouds and cloud shadows from normally 

illuminated surface conditions is difficult. 

Intuitively, it seems that clouds and cloud 

shadows are easily separated from clear-sky 

measurements because clouds are generally 

white, bright, and cold while cloud shadows 

are usually dark. Nevertheless, there are 

clouds that are not white, bright, or cold and 

cloud shadows even brighter than the 

average surface reflectance. The problems 

arose from the wide range of reflectances and 

temperatures observed on the surface (Irish, 

2000). One common approach was to screen 

clouds and cloud shadows manually. 

However, this approach was time consuming 

and would limit efforts to the Landsat 

historical study of the earth's surface.  

Over the years, a number of methods 

were developed for cloud identification. 

However, most of them were designed for 

moderate spatial resolution sensors such as 

Advanced Very High Resolution Radiometer 

(AVHRR) and Moderate Resolution Imaging 

Spectro-radiometer (MODIS). These sensors 

were usually equipped with more than one 

thermal band, or with water vapor/CO2 
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absorption bands, both of which were useful 

for thin semi transparent cloud detection 

(Ackerman et al., 1998; Derrien et al., 1993; 

Saunders and Kriebel, 1998). For high 

spatial resolution sensors like Landsat, with 

only one thermal band and 6 optical bands 

placed in atmospheric windows, an accurate 

cloud identification was difficult and cloud 

shadow identification was even more 

difficult. Clouds cast shadows on any type of 

land cover. When cloud shadows fall on 

urban or bright rocks, they can be very bright 

compared to the average surface reflectance. 

Moreover, when the cloud is semi 

transparent, the darkening effect of the cloud 

shadow can be subtle, making the cloud 

shadow hard to detect. Therefore, clouds and 

cloud shadows detection especially thin 

clouds and their shadows in Landsat images 

is still an important issue in the remote 

sensing community, particularly as we try to 

use increasingly automated methods to 

analyze large volumes of data. 

Historically, screening of clouds in 

Landsat data was performed by the 

Automated Cloud Cover Assessment 

(ACCA) system (Irish, 2000; Irish et al., 

2006). By applying a number of spectral 

filters, and depending heavily on the thermal 

infrared band, ACCA generally worked well 

for estimating the overall percentage of 

clouds in each Landsat scene, which was its 

original purpose. However, it did not provide 

sufficiently precise locations and boundaries 

of clouds and their shadows to be useful for 

automated analyses of time series of Landsat 

images. Additionally, ACCA failed to 

identify warm cirrus clouds (Irish, 2000; 

Irish et al., 2006). Wang et al. (1999) 

proposed the use of two multi-temporal 

Landsat TM images to identify clouds and
 

their shadows by image differencing. This 

method could successfully provide an 

accurate cloud and cloud shadow mask, but 

it was highly dependent on the input images.
 

The Landsat Ecosystem Disturbance 

Adaptive Processing System (LEDAPS) 

atmosphere correction tool also generated an 

internal cloud mask using two passes 
(Vermote and Saleous, 2007).  There were 

four tests in the first pass and a thermal test 

in the second pass which was similar to 

ACCA, except that the second pass 

generated a cloud mask while the second 

pass of ACCA only provided the percentage 

of cloud cover. This algorithm needed other 

ancillary data like the surface temperature 

provided from National Centers for 

Environmental Prediction (NCEP) to help 

generate a coarse resolution surface 

temperature reference layer for cloud 

detection. This algorithm has already been 

used extensively for atmospheric correction 

of Landsat images and has shown a better 

method for cloud detection in low and 

middle latitudes compared to ACCA. 

However, it might not work well when the 

clouds cover a large percentage of the image 

(large amount of leakage were observed) or 

in sun glint and turbid water conditions 

(Vermote, 2010). Hégarat-Mascle and André 

(2009) developed an approach that uses only 

two bands, Green and Short Wave Infrared 

(SWIR), to generate a “clear-sky line” and 

use the distance from the tested points to this 

line to detect cloud pixels. This method was 

originally used by Zhang et al. (2002) to 

correct for haze in Landsat imagery. It was 

shown to be accurate for retrieving clouds 

over vegetated areas, but it failed when the 

surface reflectance was bright, as in the case 

for rocks, sand, etc. (Zhang et al., 2002). By 

implementing a cloud-mask algorithm 

originally developed for the MODIS Land 

bands on Landsat data, Oreopoulos et al. 

(2011) proposed an algorithm that performs 

on par with the ACCA algorithm without 

using the thermal band. 

Detecting cloud shadow was more 

difficult than detecting cloud. Previously, 

cloud shadow identification was based on
 

spectral tests. Though it worked sometimes, 

most of the time it would inevitably include 

other dark surfaces that had similar spectral 

signatures (like topographic shadows or
 

wetlands) and excluded cloud shadows that 

were not dark enough (Ackerman et al., 

1998; Hutchison et al., 2009). Recently, 

geometry-based cloud shadow detection was 

shown to be feasible and more accurate.
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Currently, there are three kinds of geometry-

based cloud shadow detection methods in the 

literature i.e., object matching, lapse rate, 

and scattering differencing. The object 

matching algorithm detects cloud shadow by 

matching cloud shadows with cloud objects 

(Berendes et al., 1992; Hégarat-Mascle& 

André, 2009; Simpson and Stitt, 1998; 

Simpson et al., 2000). The lapse rate method 

used a constant lapse rate to estimate cloud 

top height by brightness temperature and use 

the cloud pixels to cast shadows (Vermote 

and Saleous, 2007). This later method 

worked well for thick clouds but it was not 

accurate enough for semi transparent clouds 

in which the brightness temperature wasa 

mixture of thin cloud and the surface. As 

cloud shadow scattering was stronger in the 

short wavelengths (especially Blue band), 

Luo et al. (2008) proposed to use the 

physical characteristics of scattering 

differences between the short wavelength 

and NIR or SWIR combined with the 

geometry, to produce cloud shadow masks. 

This new method worked well over 

vegetated area, but it was less accurate when 

the cloud shadow falls on bright surfaces or 

the cloud shadow comes from a very thin 

cloud. 

In this paper, we propose a new 

algorithm to detect both clouds and cloud 

shadows for Landsat TM and Enhanced 

Thematic Mapper Plus (ETM+). The cloud 

mask was computed from albedo and 

thermal band from Landsat imagery to 

separate cloud pixel, potential cloud pixels, 

and clear-sky pixels. Soil index and water 

index were used to evaluate potential cloud 

pixels to clear-sky pixels or cloud pixel to 

produce cloud layer. Cloud shadows mask 

were computed from the Near Infrared (NIR) 

band to generate a potential shadow layer. 

By comparing cloud layer and shadow layer 

using spatial relation, shadow must be within 

cloud and  cloud must be within shadow. 

The spatial relation between cloud pixel 

location and cloud shadow pixel location 

was determined by the view angle of the 

satellite sensor and the type of cloud.  
The need for effective and efficient 

cloud and shadow screening has grown 

tremendously for two major reasons. First, 

the Landsat L1T format provides accurate 

registration of images that they can be 

compiled into a time series with no 

significant problem in registration issues. 

Second, Landsat data policy change enables 

a free access to the archive.  With such an 

easy way to obtain free Landsat data, the big 

volumes of data archives need a more 

efficient and effective method of data 

processing, particularly cloud masking, 

before the data could be used further.  

Although there is a bulk of satellite data 

archives, it is still difficult to obtain cloud 

free imageries of many areas in Indonesia. 

Therefore, the objective of this study was to 

develop a cloud and cloud shadow masking 

method to be applied on Landsat imageries 

using a combined algorithm of visible and
 

thermal bands.  The advantage of this 

method was that we can set the theresholding 

value for specific Indonesia region. A 

comparison with tree-base algorithm method
 

was also conducted. By combining several 

approaches of existing methods, this method 

was developed based on specific geographic 

and climate condition in Indonesia, in which
 

cloud cover has become major problem to 

obtain cloud free satellite data. The ultimate 

goal was to provide an automated method for 

screening clouds and their shadows for a big 

data volumes of Landsat imageries.
  

 

2  MATERIALS AND METHOD 

2.1 Cloud and cloud shadow detection        

algorithms 

The input data for the model were Top 

of Atmosphere (TOA) reflectances for Bands 

1, 2, 3, 4, 5, 7 and Band 6 Brightness 

Temperature (BT) (Table 1). For Landsat
 

L1T imageries, Digital Number (DN) values 

were converted to TOA reflectances and BT 

(in Celsius degree) with the sun correction 

software developed by CSIRO for 

Indonesia’s  National  Carbon  Accounting
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Table 1. Landsat TM/ETM and spectral band characteristics. 
 

Landsat TM Landsat ETM 

Band Number Wavelength (µm) Band Number Wavelength (µm) 

Band 1 0.45–0.52 Band 1 0.45–0.515 

Band 2 0.52–0.60 Band 2 0.525–0.605 

Band 3 0.63–0.69 Band 3 0.63–0.69 

Band 4 0.76–0.90 Band 4 0.75–0.90 

Band 5 1.55–1.75 Band 5 1.55–1.75 

Band 6 10.40–12.50 Band 6 10.40–12.50 

Band 7 2.08–2.35 Band 7 2.09–2.35 

 

System (INCAS). Then, based on cloud and 

cloud shadow physical properties were used 

to extract a potential cloud layer and a 

potential cloud shadow layer. Finally, the 

geometric relationships were used to match 

the potential cloud and cloud shadow layer, 

before proceeding to the production of the 

final cloud and cloud shadow mask.  

There were three components of 

cloud pixel analysis based on spectral 

characteristics of the pixels i.e., thermal, 

albedo, and infrared bands. Different 

thresholds were applied to distinguish cloud 

and shadow pixels from bare and water 

pixels.  Several steps using albedo or visible 

spectrum were used since there are several 

types of clouds such as thin clouds (cirri 

forms), thick clouds (cumuli forms), strati 

form, and vertical clouds (cumulonimbus). 

Water pixels were sometimes difficult to 

separate from shadow pixels. Therefore, the 

technique be-came complex and the critical 

aspect was to define the thresholds. The 

complete procedures to generate the cloud 

and shadow masking is described in Figure 

1. 

 

2.2  Layers of potential clouds and cloud         

shadows 

2.2.1Potential cloud layer  

The first step in the algorithm combined 

several spectral tests to identify the potential 

cloud pixels (the pixels that may be cloudy 

or may be clear). Otherwise, the pixels were  

considered  to  be  absolutely  clear-sky 

pixels, or absolutely cloud pixels.  

The first pass included a number of 

spectral tests as follows: 

if f(X)thick < Xthick-low , then P = absolutely 

clear-sky pixels; 

if Xthick-low < f(X)thick < Xthick-up , then P = 

potential cloud pixels; 

if Xthick-up < f(X)thick , then P = absolutely 

cloud pixels; 

if f(X)temp < Xtemp-thres , then P = absolutely 

cloud pixels; 

if Xtemp-thres <  f(X)temp , then P = absolutely 

clear-sky pixels; 

where: 

cloud thickness function:  

f(X)thick = (X1 +X2 +X3)/3,  

Xi: Digital number fixel of band -i of 

Landsat data 

cloud temperature function:  

f(X)temp = X6;  

X6: Temperature derived from band 6 

of Landsat data 

Xthick-low=lower threshold value of 

cloud thickness 

Xthick-up=upper threshold value of cloud 

thickness 

Xtemp-thres=threshold value of cloud 

temperature 

P = pixel 

This “Basic Test” was one of the 

fundamental tests for cloud identification. 

Due to the bright and cold nature of clouds, 

bright cloud was detected by mean of visible 

band, and cold clouds was detected by 

temperature from band 6 of Landsat data. 

After that, the potential cloud pixels must be 

classified into absolute clear-sky pixels or 

absolutely cloud pixels. Two tests for 

potential cloud pixels were applied. First was 

soil test, and second was confidence test 

close to cloud with distance. Soil test was to  
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Figure 1. Flowchart of cloud and cloud shadow masking 

 

distinguish bare soil from cloud pixels. The 

condition and equation were as follows: 

 

if f(X)soil > Xsoil-thres , then P = cloud 

pixels, otherwise was classified as soil. 

Where: 

soil test function: 

 f(X)soil =2*X1-X2-X3+2*X4-2*X5; 

 Xi = digital number for Pixel 

band -i of Landsat data  

Xsoil-thres=soil and cloud threshold 

value 

P = pixel 

Confidence Test was a test to measure 

the distance of closeness to cloud. If the 

distance of the probably cloud to the 

absolutely cloud pixels less then five pixels, 

the probably cloud were classified to 

absolutely cloud pixels, otherwise were 

classified to probably cloud pixels. Finally, 
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this algorithm will spatially improve the 

cloud mask by using the rule that sets a pixel 

to cloud if five or more pixels in its 3- 

Finally, this algorithm will spatially improve 

the cloud mask by using the rule that sets a 

pixel to cloud if five or more pixels in its 3-

by-3 neighborhood are cloud pixels; 

otherwise, the pixel stays clear. 

 

2.2.2 Potential cloud shadow layer 

Since the beam of solar radiation was 

blocked by the clouds, the cloud shadows 

were mainly illuminated by scattered light. 

As the atmospheric scattering was stronger at 

shorter wavelengths (for example visible 

bands), the diffusive radiation in the 

shadows would be relatively smaller at 

longer wavelengths (for example NIR and 

SWIR bands), making the shadowed pixels 

darker than their surroundings (Luo et al., 

2008). Moreover, as NIR reflectance was 

usually high (including vegetation and rock), 

the darkening effect of cloud shadows was 

most obvious in this band.  

The test for cloud shadow detection was 

as follows: 

 

if f(X)cloud-shadow < Xshadow-thres, then P 

was classified as probably shadow pixels; 

otherwise was classified absolutely non 

shadow pixels;  

where:  

f(X)cloud-shadow = X4 + X5;  

Xi : digital number for fixel band -i of 

Landsat data 

Xshadow-thres  = shadow threshold value 

P = pixel 

 

If the result was probably shadow pixel, 

the water test was then applied. The water 

test was used to separate water and probable 

shadow pixels, as follows: 

If f(X)shadow-water < Xwater-thres  , then P 

was classified as water, otherwise 

was classified as shadow. 

Where:  

Shadow function:  

f(X)shadow-water = (X2+X3-X5);  

Xi : digital number for fixel band -i of 

Landsat data 

Xwater-thres = shadow and water 

threshold value 

P = pixel 

 

2.2.3 Geometric relationship between          

cloud and cloud shadow match 

The basic idea of cloud and cloud 

shadow matching approach was that by
 

knowing the view angle of the satellite 

sensor, the solar zenith angle, the solar 

azimuth angle, and the relative height of the
 

cloud, we can predict the cloud shadow 

location based on the geometric relationship 

between cloud pixels and respective shadow
 

pixels. Once the first three factors were 

known, we could use them to calculate the 

projected direction of the cloud shadow.
 

Along this direction, the algorithm matched 

the cloud object with the potential shadow 

layer since a cloud and its shadow must be in 

the projected direction (Figure 2).
 

 

 
 

Figure 2.  Schematic of spatial relationship between the potential cloud and shadow. 

                 Dx=  easting distance between position of cloud and shadow pixel; Dy= northing 

distance between position of cloud and shadow pixel. 
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The cloud height was estimated by cloud 

size. The cloud size were categorized to 

three categories i.e., 1-30 pixels, 31-50 

pixels, and >50 pixels. If cloud size were 1-

30 pixels, the shadow distance from cloud 

was 0-20 pixels, if cloud size were 31-50 

pixels, the shadow distance from cloud was 

0-30 pixels, and if cloud size more than 50 

pixel, the searching distance of shadow was 

0-200 pixels. 

As cloud base height could be any value 

from approximately 200 m to 12,000 m, it 

would be time consuming and may cause 

false matches if we iterated cloud height 

across the entire range for every single cloud 

object to find its shadow. Therefore, it was 

very essential to develop a method, which 

could be more efficiently encountered a huge 

number of pixels as well as a big volume of 

satellite data. 

 

3 RESULT AND DISCUSSION 

3.1  Cloud and cloud shadow mask 

The results of cloud and cloud shadow 

detection of Landsat imagery of 10 May 

2001 scene 124-062 in false color 

composites background are presented in 

Figure 3, 4, and 5. The cloud could be 

identified clearly as appeared in red from 

albedo (Figure 3) and yellow from thermal 

band (Figure 4), while the cloud shadow 

appeared in magenta (Figure 5). Albedo was 

used to identify the cloud thickness, while 

thermal band was used to identify the cloud 

height. The higher the cloud the lower the 

temperature of cloud. Thin cloud usually had 

the lower temperature, so the thin cloud was 

detected easily by thermal band.  

In this subset image, there were two 

types of clouds, thin cloud and thick cloud. 

White clouds (thick cloud) could be detected 

by albedo and thin clouds could be detected 

by thermal band. Combining these two kinds 

of cloud, thick and thin cloud, into cloud can 

be shown in Figure 6 and 7 in white color.  

Cloud shadow as shown in Figure 5 

showed many errors, the red circles were not 

real cloud shadow but detected as cloud 

shadow. By combining the cloud and cloud 

shadow, we could obtain a better result as 

seen in Figure 6.  After applying geometric 

relationship method on cloud and cloud 

shadow, it showed that shadows without 

cloud could be eliminated as seen in Figure 

7. Small thick cloud in Figure 7 with the red 

circle was also detected using this method 

where every small thick clouds always have 

a shadow of their association. 

 

 

   
 

Figure 3. Cloud detection   

               from albedo test. 

 

Figure 4. Cloud detection     

               from thermal test. 

 

Figure 5. Shadow detection 
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White : Cloud 

Red : Shadow 

Magenta : shadow 

without cloud 

 

Figure 6. Cloud and shadow   

               detection before  

               geometric relationship  

               processing. 

 

Figure 7. Cloud and shadow  

               detection after  

               geometric relationship  

               processing. 

 

 

  
 

Figure 8.  Landsat 7 imagery scene 124062, date 100501 (left), cloud masking result (right). 
 

Table 2. Accuracy assessment result from Landsat 7 imagery scene 124062, date 100501. 

   

 Classes Cloud Non Cloud Total 

 

Cloud 36256869 pixels 

(62.94 %) 

16030 pixels 

(0.03 %) 

36272899 pixels 

(62.97%) 

Non Cloud 705151 pixels 

(1.22%) 

20627150 pixels 

(35.81%) 

21332301 pixels 

(37.03%) 

Total 36962020 pixels 

(64.16%) 

20643180 pixels 

(35.84%) 

57605200 pixels 

(100.00%) 

 

The accuracy assessment of the cloud 

and cloud shadow result was investigated by 

applying the method for whole scenes of 

Landsat imagery that cloud be seen in Figure 

8.  The accuracy result in Table 2 showed 

that 36256869 pixels (62.94 %) of cloud 

remained cloud, and 20627150 pixels (35.81 

%) of non cloud remained non cloud, so the 

98.75 % of pixel well detected. The error 

result was 1.25 %, if this error was separated 

into commission and omission errors, the 

commission error was 1.22 %, and the
 

omission error was 0.03 %. The omission 

error more important compared with 

commission error. If commission error was
 

detected, the missing area could be change 

with the same data in difference date of 

acquisition, but if omission error was 

detected, the error could not be removed.
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3.2 Comparison with other method 

We also compared the result of cloud 

and cloud shadow using this method with the 

cloud and cloud shadow using tree base 

algorithm from Maryland University. Figure 

9a showed the result from of this method, 

Figure 9b was the original Landsat imagery 

in RGB 321 composite, and Figure 9c was 

the result from tree base algorithm.  Another 

comparison in difference area are also shown 

in Figure 10. Figure 10a showed the result 

from of this method, Figure 10b was the 

original Landsat imagery in RGB 321 

composite, and Figure 10c was the result 

from tree base algorithm. 

The area inside red circle in Figure 9c 

and 10c showed that there were some 

misleading results of the tree base method, in 

which the river flow was identified as 

shadow.  As an example, the water surface 

on the right below side of the subset in 

Figure 9b, could be distinguished from cloud 

shadow using this method (Figure 9a), but 

identified as cloud or cloud shadow using the 

tree base method (Figure 9c).  From the 

above figures it was also revealed that this 

method could effectively detect clouds and 

cloud shadows, which enabled to perform an 

automated data processing. Therefore the 

method proposed by this study could be used 

to undertake cloud masking or screening of 

satellite data more easily.  

 

 

   

Legend: 

Blue/white : 

Clouds 

Green : Shadows  

 

 

Figure 9a. Cloud and 

shadow mask from 

this method. 

 

Figure 9b. Composite 

321 Landsat. 

 

Figure 9c. Cloud and 

shadow mask from 

tree base method. 

 

 

   

Legend: 

Blue/white : 

Clouds 

Green : Shadows  

 

 

 

Figure 10a. Cloud 

and shadow mask 

from this method. 

 

Figure 10b. 

Composite 321 

Landsat. 

 

Figure 10c. Cloud and 

shadow mask from 

tree base method. 

 



New Automated Cloud and Cloud-Shadow Detection using Landsat Imagery 

 

International Journal of Remote Sensing and Earth Sciences Vol. 9 No.2 December 2012 109 

 

4 CONCLUSION 

The estimates of cloud cover derived 

from this algorithm provided improvement 

results compared with using tree base 

algorithm estimation. There are two types of 

clouds which could potentially result 

misleading identification i.e., thin clouds and 

small thick clouds which were usually 

difficult to be detected by many methods.  

However they could be identified very well 

by this method. Water surface was among of 

the object which could have similarities with 

cloud shadow features, but they could be 

distinguished quite well using this proposed
 

method.  Meanwhile that object with similar 

features could not be distinguished by the 

tree base algorithm method accurately. The 

accuracy result of this method was 98.75%.
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