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Abstract. Drought is becoming one of the most important issues for government and policy makers. 

National food security highly concerned, especially when drought occurred in food production center 

areas. Climate variability, especially in South Sulawesi as one of the primary national rice production 

centers is influenced by global climate phenomena such as El Niño Southern Oscillation or ENSO. 

This phenomenon can lead to drought occurrences. Monitoring of drought potential occurrences in 

near real-time manner becomes a primary key element to anticipate the drought impact. This study 

was conducted to determine potential occurrences and the evolution of drought that occurred as a 

result of the 2015 El Niño event using the Vegetation Health Index (VHI) from the National Oceanic 

and Atmospheric Administration (NOAA) Advanced Very High Resolution Radiometer (AVHRR) satellite 

products. Composites analysis was performed using weekly Smoothed and Normalized Difference 

Vegetation Index (or smoothed NDVI) (SMN), Smoothed Brightness Temperature Index (SMT), 

Vegetation Condition Index (VCI), Temperature Condition Index (TCI), and  Vegetation Health Index 

(VHI).  This data were obtained from The Center for Satellite Applications and Research (STAR) - 

Global Vegetation Health Products (NOAA) website during 35-year period (1981-2015). Lowest 

potential drought occurrences (highest VHI and VCI value) caused by 2015 El Niño is showed by 

composite analysis result. Strong El Niño induced drought over the study area indicated by decreasing 

VHI value started at week 21st. Spatial characteristic differences in drought occurrences observed, 

especially on the west coast and east coast of South Sulawesi during strong El Niño. Weekly evolution 

of potential drought due to the El Niño impact in 2015 indicated by lower VHI values (VHI < 40) 

concentrated on the east coast of South Sulawesi, and then spread to another region along with the El 

Nino stage.    
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1 INTRODUCTION 

 Weather and climate are important 

issues and give significant impact to 

policies taken by the government, 

especially regarding to the national food 

security. Global and regional climate 

conditions can potentially trigger a 

drought in Indonesia (Setiawan 2014), 

resulting reduction in national rice 

production (Surmaini et al., 2015). 

Climate variability in Indonesia is strongly 

influenced by the global climate 

phenomenon such as El Niño Southern 

Oscillation or ENSO (Ropelewski and 

Halpert 1987; Chang et al., 2004; Qian et 

al. 2010). Warm phase of ENSO, known as 

El Niño, generally affect decreases rainfall 

and lead to drought in most parts of 
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Indonesia (Harger 1995; D’Arrigo and 

Wilson 2008; Erasmi et al. 2009; Setiawan 

2011; Setiawan 2014). 

The climatic condition in South 

Sulawesi as one of the national rice 

production center also influenced by 

drought due to El Niño events. This 

impact generally shown by ratio between 

the area of rice production area damaged 

by drought and the total cropping area, 

represented by Paddy Drought Impact 

Index (PDII), especially during August to 

October period (Surmaini et al. 2015). 

South Sulawesi is also listed as a region 

prone to drought. Recorded 108 drought 

events occurred during 30-years period 

(1979 – 2009) (BNPB 2010). 

Different climatological rainfall 

characteristics between western and 

eastern region of South Sulawesi 

(Setiawan 2007) suspected to be causes 

treatment for potential drought occurrences 

impact can’t be done using similar way. 

Recognition about teleconection pattern 

between Sea Surface Temperature (SST) 

against the drought is needed to complete 

the drought monitoring information so 

that it can be used to make drought 

prediction (Sivakumar et al., 2014). The 

influences of ENSO (represented by SST 

anomaly over Niño 3.4 region) on the 

rainfall in South Sulawesi are more 

significant than the influence of Indian 

Ocean Dipole (IOD) (Hidayat et al., 2016). 

Therefore, the potential for drought 

monitoring in near real-time becomes a 

key element in efforts to anticipate 

drought impacts induced. 

Operational near real-time global 

drought monitoring and identification has 

done by utilizing National Oceanic and 

Atmospheric Administration (NOAA) 

Advanced Very High Resolution Radiometer 

(AVHRR) satellite. Outcomes NOAA- 

AVHRR from Smoothed and Normalized 

Difference Vegetation Index (NDVI or 

smoothed) (SMN) is commonly used as a 

substitute for rainfall data in quantifying 

drought (Jiang et al. 2008; Jalili et al., 

2014). Vegetation health index (VHI), 

vegetation condition index (VCI) and 

temperature condition index (TCI) are 

other drought indices that can be used for 

drought quantification using satellite 

technology. VHI has been widely used 

throughout the world (Zargar et al., 2011; 

Kogan et al., 2013) to quantify the 

agricultural drought, such as the United 

States (Kogan et al. 2012; Anderson et al. 

2013), Rusia (Kogan et al., 2015), Iran 

(Jalili et al., 2014), India (Bhuiyan et al., 

2006), Bangladesh (Nizamuddin et al., 

2015), China (Zhang et al., 2016) and 

West Java Indonesia (Sholihah et al., 

2016). The objectives of this study was to 

carry out the drought potential and 

evolution in South Sulawesi during strong 

El Niño event in 2015 using VHI, VCI and 

TCI from NOAA-AVHRR Near Real-Time 

outcomes. 

 

2 MATERIALS AND METHODOLOGY 

The study was conducted using 

outcome from National Oceanic and 

Atmospheric Administration (NOAA) 

Advanced Very High Resolution 

Radiometer (AVHRR) satellite products 

(Wei Guo 2013) such as Smoothed and 

Normalized Difference Vegetation Index (or 

smoothed NDVI) (SMN) and Smoothed 

Brightness Temperature Index (SMT). 

SMN is an output-based index of satellites 

that can be used to estimate the level of 

greenness of the vegetation with the value 

of +1 to -1. If SMN value is low (0.1 or 

less), showing can be interpreted that 

surface of the earth is rock or sand. 

Intermediate values (0.2 to 0.5) can be 

interpreted as an agricultural area that 

has been harvested, and the high value 

(0.6 to 0.9) are interpreted as forest or 

crops area in the peak stage of growth. 

SMT can explain thermal condition of the 

plant, where which the higher the SMT 

interpreted as drier vegetation condition 

(Kogan, 1990). 

Potential drought occurrences also 

can be quantified using another calculation 
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outcome from NOAA – AVHRR, such as 

Vegetation Condition Index (VCI) and 

Temperature Condition Index (TCI). 

Vegetation Condition Index (VCI) is an 

anomalous value of the Normalized 

Difference Vegetation Index (NDVI), which 

can be used to estimate the humidity 

condition. The higher VCI value associated 

with higher humidity can be detected from 

the vegetation. Less than 40 VCI value 

indicates humidity stress occured, while 

the ideal condition is indicated by more 

than 60 VCI value (Kogan 1995; Kogan 

1997). VCI value for weeks or months to j 

is calculated from (Kogan 1995; Kogan 

1997): 

 

���� = ����� − ����	
�
����	�
 − ����	
�

�100 (2-1) 

 

with NDVImax and NDVImin represented 

maximum and minimum NDVI value for 

current week or month and NDVIj is NDVI 

value for week or month. 

TCI can be used to estimate the 

thermal conditions of vegetation. Less 

than 40 TCI value of indicates the 

vegetation is under pressure (stress) 

thermally, while the condition conducive 

to the plant indicated by the value of more 

than 60. TCI value obtained by relatively 

similar to the VCI, but using the 

Brightness Temperature (BT) input for 

following, maximum and minimum week 

or month (Kogan 1995; Kogan 1997). 

Vegetation health index (VHI), VHI 

value is representation of vegetation 

conditions obtained by combining 

moisture and temperature conditions, so 

it have better effectiveness in representing 

agricultural drought (Kogan 1995; Zargar 

et al., 2011; Kerdprasop and Kerdprasop 

2016). The calculation of this value is 

obtained from the Vegetation Condition 

Index (VCI) and Temperature Condition 

Index (TCI) (Kogan 1995; Kogan 1997) by 

the equation: 

 

��� = ���� + �1 − ����� (2-2) 

with a is a weighting factor for VCI 

and TCI. VHI value is used to indicate the 

level of health of vegetation greenness 

level. Higher VHI value indicates greener 

vegetation. Less than 35 VHI value of 

indicates the start of the medium drought, 

and less than 15 can be associated with 

severe drought s have occured 

(Kerdprasop and Kerdprasop 2016). 

Time series analysis has been done 

using the calculation results of various 

indices (SMN, SMT, VCI, TCI and VHI) to 

capture general climatological properties 

over study area. These indices are freely 

available and can be accessed through 

The Center for Satellite Applications and 

Research (STAR) - Global Vegetation 

Health Products website (www.star. 

nesdis.noaa.gov/smcd/emb/VCI/VH/inde

x.php) in a weekly time scale during 

relatively long period (1981-2015). 

Sea surface temperature (SST) 

anomalies data in the tropical Pacific 

Ocean Niño 3.4 region (5° N-5° S, 120° W-

170° W) generally used as a reference for 

determining whether ENSO are in warm 

condition (El Niño) or condition cold (La 

Niña). The moving average for 3-month s 

is a standard method that is done to the 

intensity of ENSO. During 1981 to 2015 

period, at least three times stronger El 

Niño events recorded: 1982/1983, 1997/ 

1998 and 2015/2016 (Chen et al., 2016; 

Jan Null 2016). 

Composite analysis was conducted 

to determine the comparison of the 

potential drought occurrence and its 

evolution during strong El Niño compared 

to normal conditions (weekly average 

value for 35-years period), indicated by 

each drought indices. Formula used to 

composite calculation relatively similar 

with an average formula, except for 

selected time period are used:  
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[��]� = is a composite 
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between west coast and east coast of 

South Sulawesi during strong El Niño. 
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