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Abstract. Nowcasting, or the short-term forecasting of precipitation, is urgently needed to support the 

mitigation circle in hydrometeorological disasters. Pangkalan Bun weather radar is single-polarization 

radar with a 200 km maximum range and which runs 10 elevation angles in 10 minutes with a 250 

meters spatial resolution. There is no terrain blocking around the covered area. The Short-Term 

Ensemble Prediction System (STEPS) is one of many algorithms that is used to generate precipitation 

nowcasting, and is already in operational use. STEPS has the advantage of producing ensemble 

nowcasts, by which nowcast uncertainties can be statistically quantified. This research aims to apply 

STEPS to generate stochastic nowcasting in Pangkalan Bun weather radar and to analyze its advantages 

and weaknesses. Accuracy is measured by counting the possibility of detection and false alarms under 

the 5 dBZ threshold and plotting them in a relative operating characteristic (ROC) curve. The observed 

frequency and forecast probability is represented by a reliability diagram to evaluate nowcast reliability 

and sharpness. Qualitative analysis of the results showed that the STEPS ensemble produces smoothed 

reflectivity fields that cannot capture extreme values in an observed quasi-linear convective system 

(QLCS), but that the algorithm achieves good accuracy under the threshold used, up to 40 minutes lead 

time. The ROC shows a curved upper left-hand corner, and the reliability diagram is an almost perfect 

nowcast diagonal line.  
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1 INTRODUCTION 

Hydrometeorological disasters are 

major natural disasters and have tended 

to increase in frequency in Indonesia over 

the last ten years (BNPB, 2020). They not 

only cause material loss but also claim 

lives. In the period 2009-2019, floods 

resulted in 2,308 deaths/missing people, 

44,585 severely damaged houses, 712 

damaged health facilities, 3,192 damaged 

religious facilities, and 5,926 damaged 

educational facilities (BNPB, 2020). 

One of the main factors causing 

hydrometeorological disasters is extreme 

rainfall (Adi, 2013). An early warning 

system for extreme weather monitoring is 

needed to mitigate such disasters (Putri, 

2018). Prediction information on extreme 

rainfall will provide an initial warning to 

decision-makers to proceed with urgent 

action. In addition, early warning rainfall 

systems can also be used to support the 

policies for protecting flood-prone areas. 

Therefore, an accurate early warning 

system of extreme rainfall is needed to 

minimize the costs of hydrometeorological 

disaster. 

In terms of time span, weather 

prediction is divided into several types: 

very long range, long range, medium 
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range, and short range/nowcasting. The 

nowcasting process includes a detailed 

explanation of current weather 

conditions, together with predictions 

obtained from extrapolation up to the 

following 6 hours (WMO, 2020). The 

nowcasting process is closely related to 

the detection of convective cloud systems. 

Currently, the nowcasting process mostly 

uses weather radar for the principle data. 

Some of the main methods that have been 

developed include thunderstorm 

detection, tracking, and extrapolation 

(Xu, 2012), such as the centroid tracking 

method (Crane, 1979; Dixon & Wiener, 

1993; Johnson et al., 1998); tracking 

radar echo by correlation (TREC) 

(Rinehart & Garvey, 1978; Wilson et al., 

1998; Chen et al., 2007); and optical flow 

methods (Han, 2008). Compared to 

meteorological satellites, weather radar is 

able to make more detailed storm 

detection. 

The centroid tracking method can 

only be used for convective precipitation 

systems, while TREC can also be 

employed in precipitation systems with 

layered clouds. When TREC is used in a 

rapidly changing convective precipitation 

system, the error rate increases 

significantly (Cao et al., 2015). Optical 

flow is a vector displacement in a dense 

plane that defines the transition of each 

pixel in a region. The method is calculated 

using a brightness constraint, with the 

assumption of brightness constancy for 

each pixel in a sequential frame. Optical 

flow is therefore commonly used as a 

feature in segmentation based on 

movement and tracking applications 

(Yilmaz et al., 2006). This advantage can 

overcome the drawbacks of centroid 

tracking and TREC methods. However, 

the level of success of the optical flow 

method is limited because it does not 

consider the physical implication of the 

development of radar echoes. Therefore, 

predicting local-scale convection systems 

that are rapidly evolving or extending is 

very difficult. 

Several nowcasting systems that are 

already operational in various countries 

(Woo & Wong, 2017; Pulkkinen, 2020) 

include: 

1. Spectral Prognosis (S-PROG), 

developed by the Bureau of 

Meteorology (BoM), Australia. 

2. Short-Term Ensemble Prediction 

Systems (STEPS), a result of 

cooperation between UKMO and BoM, 

UK and Australia. 

3. Auto Nowcasting System (ANC), used 

by the National Center of Atmospheric 

Research (NCAR), United States. 

4. McGill Algorithm for Precipitation 

Nowcasting Using Semi-Lagrangian 

Extrapolation (MAPLE), developed by 

McGill University, Canada. 

5. Short-range Warning of Intense 

Rainstorms in Localized Systems 

(SWIRLS), produced by the Hongkong 

Observatory, Hong Kong. 

6. Dynamic and adaptive radar tracking 

of storms (DARTS), developed by 

CASA Dallas-Forth Worth. 

7. String of Beads Model for Nowcast 

(SBMcast), used by the Spanish 

Meteorology Agency (AEMET) and the 

Catalan Weather Service (SMC). 

Several algorithms have also been 

developed for precipitation nowcasting 

but are still at the research stage, such as 

Scale Filtering DARTS (SF-DARTS); 

Vertically Integrated Liquid Based 

Nowcasting (RadVil); Autoregressive 

Nowcasting Using VIL (ANVIL); and 

Lagrangian Persistence (LP-R). In 

Indonesia, BMKG, which operates 42 

weather radars, applied the MAPLE 

algorithm during the period 2009-2018, 

as provided by Weather Decision 

Technologies (WDT). After the license 

expired in 2018, there are no nowcasting 

products using weather radar data. 

In this research, the STEPS 

algorithm was chosen to generate 
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precipitation nowcasting using BMKG 

weather radar data, due to its proven 

good performance (Pulkkinen, 2018), and 

as it is already at the operational stage. 

The algorithm was developed based on S-

PROG, with the addition of stochastic 

perturbation into the reflectivity and 

advection fields to generate the ensemble 

nowcast. Another advantage of such 

nowcasting is its capability to compute 

uncertainties statistically. 

 

2 MATERIALS AND METHODOLOGY 

2.1 Pangkalan Bun Weather Radar 

The study used non-polarimetric C-

Band weather radar with a 200 km 

maximum range, 250 m spatial 

resolution, and nine elevation angles. 

Figures 2-1 and 2-2 show the radar 

scanning strategy and beam blockage 

analysis. The scanning strategy was 

optimised to enable dense observation at 

a low elevation in order to maximise 

precipitation detection. The beam 

blockage analysis shows that there was 

no blocking due to topography in any 

direction. Because of these two aspects, 

the radar should theoretically produce 

good data. The radar hardware 

specification is shown in Table 2-1.  
 
2.2 Study area 

 The study area covered 200 km 

around the Pangkalan Bun radar point 

location, including both land and the 

northern part of the Java Sea, so that 

cloud systems growing and developing 

over the land or sea would be detected. 

The extreme rainfall that occurred on 

January 28-29, 2018 (BMKG Pangkalan 

Bun report, 2018) due to quasi-linear 

convective system (QLCS) was used to 

evaluate the accuracy of the STEPS 

algorithm. 

 

 
Figure 2-1: Pangkalan Bun weather radar scanning strategy 
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Table 2-1: Radar hardware specification 

Parameter Value 

Radar site name Pangkalan Bun 
Latitude -2.736467° S 

Longitude 111.6403° E 
Altitude 31 m 
Tower height 20 m 
Frequency 5.6 GHz 
Beam width <1° 
Pulse width 0.5 - 2.0 μs 
PRF Min 250 Hz 
PRF Max 1200 Hz 
Signal Processor GDRX-SP 
Transmitter Type Coaxial 

magnetron 
Polarization Single 
Installation year 2014 
Manufacturer Selex SI GmBH 

 
2.2 Study area 

 The study area covered 200 km 

around the Pangkalan Bun radar point 

location, including both land and the 

northern part of the Java Sea, so that 

cloud systems growing and developing 

over the land or sea would be detected. 

The extreme rainfall that occurred on 

January 28-29, 2018 (BMKG Pangkalan 

Bun report, 2018) due to quasi-linear 

convective system (QLCS) was used to 

evaluate the accuracy of the STEPS 

algorithm. 

 

2.3 Methods 

 The stochastic precipitation 

nowcasting methodology used in the 

research is based on the work of Bowler 

et al. (2006). The fundamental 

assumption is that the structure and 

intensity of rainfall can be described by 

the multiplicative cascade model and 

lognormal distribution, an approach that 

is described in detail by Kedem and Chiu 

(1987) and Veneziano et al. (1996).  Due 

to this assumption, the reflectivity field in 

the dBZ units at time t, which 

corresponds to the logarithm of rain rate, 

can be decomposed into an additive 

cascade:  

𝑍𝑖,𝑗(𝑡) =  ∑ 𝜎𝑘(𝑡)𝑌𝑘,𝑖,𝑗(𝑡) + 𝜇𝑘(𝑡)𝑛
𝑘=1      (2-1) 

where each cascade level k represents a 

certain spatial scale. Yk,i,j is a random 

variable having the standard normal 

distribution after normalisation by  the 

mean µk and standard deviation σk, while 

i and j denote the spatial coordinates. 

That above decomposition was obtained 

by applying a fast Fourier transform (FFT) 

and Gaussian band-pass filter sequence 

to the reflectivity field Z(t). 

 The lead time is denoted by tl, the 

forecast reflectivity field by Ŷk (t+ tl), and 

the cascade level k is given by the 

weighted sum:  

 

Ŷ𝑘(𝑡 + 𝑡𝑙) = 𝑤𝑘
𝑒(𝑡 + 𝑡𝑙) 𝑌𝑘.𝑖.𝑗

𝑒 (𝑡 + 𝑡𝑙) + 

                            𝑤𝑘
𝑛(𝑡 + 𝑡𝑙) 𝑌𝑘.𝑖.𝑗

𝑛 (𝑡 + 𝑡𝑙)   (2−2) 

where the weights 𝑤𝑘
𝑒 and 𝑤𝑘

𝑛 are 

formulated by: 
 

𝑤𝑘
𝑒(𝑡 + 𝑡𝑙) = 𝜌𝑘(𝑡 + 𝑡𝑙) 

𝑤𝑘
𝑛(𝑡 + 𝑡𝑙) = √1 − 𝑤𝑘

𝑒(𝑡 + 𝑡𝑙)
2 

(2-3) 

The model for the temporal 

evolution of the reflectivity field consists 

of two complementary cascades: the 

extrapolation (𝑌𝑘
𝑒) and noise (𝑌𝑘

𝑛) 

cascades. These two variables are 

governed by autoregressive (AR2) 

models: 
𝑌𝑘,𝑖,𝑗

𝑒 (𝑡 + 𝑡𝑙) = 𝜙𝑘,1𝑌𝑘,𝑖,𝑗
𝑒 (𝑡 + 𝑡𝑙 − ∆𝑡) + 

                       𝜙𝑘,2𝑌𝑘,𝑖,𝑗
𝑒 (𝑡 + 𝑡𝑙 − 2∆𝑡) 

(2-4) 

 
𝑌𝑘,𝑖,𝑗

𝑛 (𝑡 + 𝑡𝑙) = 𝜙𝑘,1𝑌𝑘,𝑖,𝑗
𝑛 (𝑡 + 𝑡𝑙 − ∆𝑡) + 

                        𝜙𝑘,2𝑌𝑘,𝑖,𝑗
𝑛 (𝑡 + 𝑡𝑙 − 2∆𝑡) + 

                        𝜙𝑘,0𝜀𝑘,𝑖,𝑗(𝑡 + 𝑡𝑙) 

(2-5) 

 
𝜌𝑘(𝑡 + 𝑡𝑙) = 𝜙𝑘,1 𝜌𝑘(𝑡 + 𝑡𝑙 − ∆𝑡) + 

                         𝜙𝑘,2 𝜌𝑘(𝑡 + 𝑡𝑙 − 2∆𝑡) 
(2-6) 

 

𝜌𝑘(𝑡 + ∆𝑡) = 𝜌𝑘,1(𝑡);  𝜌𝑘(𝑡 + 2∆𝑡)        

= 𝜌𝑘,2(𝑡) 
(2-7) 



Radar Based Stochastic Precipitation… 

International Journal of Remote Sensing and Earth Sciences Vol. 18 No. 1 June 2021 95 

 
Figure 2-2: Pangkalan Bun beam blockage analysis. There is no terrain blocking in any direction. 

 

 
Figure 2-3: Research flowchart 
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where autocorrelation 𝜌𝑘(𝑡 + 𝑡𝑙) 
represents the explained variance; and 

∆𝑡 denotes the time step between the 

consecutive reflectivity radar data (tl is 

assumed as a multiple of ∆𝑡). The 

parameters 𝜙𝑘,1and 𝜙𝑘,2were obtained 

from the initial lag-1 and lag-2 
autocorrelation coefficients:  
 

𝜙𝑘,1 =
𝜌𝑘,1(𝑡)[1 − 𝜌𝑘,2(𝑡)]

1 − 𝜌𝑘,1(𝑡)2
 (2-8) 

𝜙𝑘,2 =
𝜌𝑘,2(𝑡)[1 − 𝜌𝑘,1(𝑡)]

1 − 𝜌𝑘,1(𝑡)2
 (2-9) 

 

 The perturbation fields added to 

the noise cascade levels (𝑌𝑘
𝑛) at each 

iteration step are denoted by  𝜀𝑘,𝑖,𝑗. All 

the equations to generate the 

nowcasting were executed using the 

pysteps Python package (Pulkkinen et 

al., 2019). The comprehensive steps are 

shown in the flowchart in Figure 2-3. 

 

3 RESULTS AND DISCUSSION 

 The extreme weather that occurred 

in Pangkalan Bun on 28-29 January 

2018 was reported by a synop report and 

also captured by Himawari 8 natural 

colour and enhanced infrared imagery 

(Figure 3-1). 

The single polarization weather 

radar of Pangkalan Bun operates with a 

temporal resolution of 10 minutes. The 

radar reflectivity input data used was a 

product of CMAX (Column Maximum), 

which is the maximum value of all 

elevations in a column. CMAX products 

were used based on the research 

conducted by Ali et al. (2019), in which 

the best rainfall estimate was obtained 

from these products. In contrast, 

Pulkkinen's (2018) research used CAPPI 

products from the 4th lowest elevations of 

weather radar observations for the input 

data of the reflectivity fields. 

 When a single deterministic 

nowcast is desired from a STEPS 

ensemble, the ensemble mean can be 

considered as the best estimate 

(Pulkkinen, 2018). The number of 

ensemble members used for this study 

was 20, dues to hardware limitations. In 

Pulkkinen's (2020) research, the number 

of ensembles was not linear with the 

accuracy of the model. A model value with 

a greater number of ensemble members 

(96) is no better than with 48 members. 

The threshold value used was 5 dBZ, 

which gives a non-zero precipitation 

estimation. 

 

 

  
(a) (b) 

 
Figure 3-1: (a) Enhanced infrared and (b) natural colour Himawari 8 imagery that captures 

the extreme weather occurence in Pangkalan Bun. 
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 The results of a qualitative 

comparison of the probabilistic nowcasts 

are shown in Figure 3-2. The STEPS 

ensemble provided smoothed reflectivity 

fields that could not capture the extreme 

values in a quasi-linear convective system 

(QLCS), which was a convective cloud 

system lined up due to the cold pool (Ali, 

2018). The STEPS algorithm also models 

the growth and decay processes (Bower, 

2006), although in Figure 3-2 it is shown 

that the nowcast results tended to lead to 

the systems undergoing a decaying 

process, whereas the observations 

showed that the convective cloud system 

in the QLCS was still at mature stage.  

 The QLCS direction is well predicted 

by the model. The typical structure of 

QLCS, that is leading edge, is still 

predicted at a 10 minutes lead time, but 

it begins disappear at a 30 minutes lead 

time. It can be inferred that the advection 

field results a good movement prediction. 

Cloud propagation is predicted to move 

eastward, and the observation data also 

show eastward movement. 

 In this research, STEPS accuracy 

was evaluated with two kinds of curve: a 

relative operating characteristic (ROC) 

curve, and a reliability diagram. The ROC 

curve was used to evaluate the 

discriminatory power of the nowcast 

exceeding threshold used (5 dBZ) at a set 

of increasing probability threshold. In this 

case, the probability threshold used was 

0.1 to 1 for ten steps. The ROC curve 

contained the probability of detection 

(POD) in the y-axis, against the false 

alarm rate (FAR) in the x-axis for the 

probability threshold. An ideal nowcast 

will result in a curve that passes through 

the upper left-hand corner, indicating 

that there exists a range of probability 

thresholds, from which one can obtain 

high detection probabilities, while also 

keeping the false alarm rate low (Jolliffe & 

Stephenson, 2003)
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Figure 3-2: Qualitative comparison between the STEPS nowcast at 10-, 30-, and 60-minute lead 
times and the observation data at the same time. It can be seen that the pattern is 
similar, but extreme values could not be captured by STEPS due to its smoothing 
process. 

 Figure 3-3a and 3-3c shows the 

ROC curve and reliability diagram for 10-

40 minute (a and b) and 1 hour (c and d) 

lead times for a given reflectivity 

threshold (5 dBZ). The ROC curve will give 

an appropriate probability threshold 

which has a maximum number of hits 

and minimum number of false alarms. It 

can be seen that the false alarm values 

are quite low, so the POFD value is less 

than 0.2, while the POD values for the 10-

40 minutes lead times are greater than 

0.7 (70%). These results indicate good 

STEPS nowcast skills with a 5 dBZ 

threshold. The area below the curve is 

also greater than 0.75 up to 40 minutes.
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(a) (b) 

  
(c) (d) 

Figure 3-3: ROC curve and realibility diagram, 10-40 minute and 1 hour time steps. 

 

 The reliability diagram shows the 

observed frequencies of the reflectivity 

fields above the given threshold compared 

to the predicted probability (Bocker & 

Smith, 2007). The diagram was produced 

by dividing the probability interval 

between 0 to 1 into equally spaced bins. 

A perfectly reliable nowcast will give a 

diagonal curve, while a poor one will be 

under/above 0.4 diagonal line. Typically, 

a reliability diagram also contains a 

histogram of the sample size for each 

probability interval that represents the 

nowcast sharpness. For good sharpness, 

the predicted probabilities should be 

close to either 0 or 1. 

 Figure 3-3 shows the reliability 

diagram computed from the STEPS 

nowcast ensemble with the given 

threshold. The nowcasts are sharp for all 

the lead times up to 40 minutes. The 

curves approach closer to the diagonal 

line for increasing probability forecast 

values. The implication of the reliability 

diagram is that precipitation above the 

threshold is analysed, and STEPS gives 

reliable estimates of the probability of 

precipitation with lower reflectivity.  

 Besides the advantages of 

accommodating forecast uncertainty, and 

improved ensemble prediction by making 

lagged average forecasts (Miyakoda & 

Talagrand, 1971), there are also 

weaknesses in the nowcasting results, 

with the prediction results not able to 

capture extreme values. In Figure 3-2, it 

can be seen that the STEPS prediction 

results show a decreasing trend in 

intensity in line with increasing time 

steps. This might occur because there are 
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no special skills in generating 

perturbation STEPS; the generated 

perturbation is not simply random, but 

rather, based on the hidden dynamics at 

each time step. 

 
4 CONCLUSION 

Stochastic nowcasting was applied 

to Pangkalan Bun single polarization 

weather radar. The radar itself is directly 

adjacent to the Java Sea and Karimata 

Strait, so precipitation often approaches 

from the sea. The STEPS algorithm was 

used, which has the advantage of 

producing an ensemble nowcast, in which 

nowcast uncertainties can be statistically 

quantified. The input data of the STEPS 

algorithm comprised a one-hour 

sequence of latest weather radar 

reflectivity fields, then continued by 

Lagrangian evolution, cascading of the 

reflectivity, estimation of the advection 

field, and computation of the stochastic 

perturbation to the reflectivity field and 

advection field to produce the nowcasting 

product. Twenty ensemble members were 

used, and the mean value was verified 

with real observation at the same time 

using an ROC curve and reliability 

diagram.  

The nowcasting product provided 

good accuracy for the 40 minutes lead 

time. The ROC showed an upper left-hand 

corner curve with more than 70% 

possibility of detection, less than 20% of 

false alarm, and with more than 75 % of 

the area below the curve. The algorithm 

can produce a reliable nowcast of up to 40 

minutes with a 5 dBZ threshold. These 

results were encouraging for the first 

attempt. 

Forecast uncertainty represented by 

the number of ensemble members is an 

advantage of this algorithm, and can be 

improved by a lagged ensemble forecast. 

Precipitation propagation, which is an 

important aspect of extreme weather 

warnings, can be predicted accurately. 

However, the prediction cannot capture 

extreme values. The tendency that occurs 

is a dissipating reflectivity field. Several 

aspects of the research need to be 

developed; for instance, evaluation of 

different thresholds in the case of testing 

model performance for different rainfall 

intensities. Another weakness is that the 

algorithm schema is quite complicated to 

apply. 

There are several works that must 

be developed, for instance, evaluating 

different threshold in case of testing 

model performance for different rainfall 

intensities. 
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