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Abstract. Statistics Indonesia (BPS) has been introducing the use of Area Sampling Frame (ASF) surveys 

from 2018 to estimate rice production areas, although the process continues to suffer from the high 

costs of human and other resources. To support this type of conventional field survey, a more scalable 

and inexpensive approach using publicly-available remote sensing data, for example from the Sentinel-

2 and Landsat-8 satellites, has been explored. In this research, we compare the performance gain from 

Sentinel-2 and Landsat-8 images using a multiple composite-index enriched machine learning classifier 

to detect rice production areas located in Nganjuk, East Java, Indonesia as a case study area. We build 

a detection model from a set of machine learning classifiers, Decision Tree (CART), Support Vector 

Machine, Logistic Regression, Ensemble Bagging Methods (Random Forest and Extra Trees), and 

Ensemble Boosting Methods (AdaBoost and XGBoost). The composite indices consist of the NDVI and 

EVI for agricultural and forest areas, NDWI for water and cloud, and NDBI, NDTI, and BSI for built-up 

areas, fallows, and asphalt-based roads. Validated by k-fold cross-validation, Sentinel-2 and Landsat-8 

achieved F1-scores of 0.930 and 0.919 respectively at the scale of 30 meters per pixel. Using a 10 meter 

resolution per pixel for the Sentinel-2 imagery showed an increased F1-score of up to 0.971. Our 

evaluation shows that the higher spatial resolution imagery of Sentinel-2 achieves a better prediction, 

not only performance-wise, but also as a better representation of actual conditions. 
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1 INTRODUCTION 

Rice is the major staple food for 

Indonesian people. However, according to 

an official publication by Statistics 

Indonesia (BPS), the production area of 

rice in 2019 was 10.68 million hectares, 

a decrease of 700.05 thousand hectares 

(6.15%) compared to 2018. Moreover, 

production in 2019 is predicted to be 

around 54.60 million tons of dry 

unhusked paddy, or 6.60 million tons 

(7.76%) less than 2018 (BPS-Statistics 

Indonesia, 2020). Therefore, to achieve 

national food security and the second of 

the Sustainable Development Goals 

(SDGs,) food monitoring has become 

crucial. 

BPS has conducted food monitoring 

by utilising the Area Sampling Frame 

(ASF), known as “Kerangka Sampel Area” 

(KSA) in the official language, which is 

performed using spot field surveys 

designated as sample segments (BPS-

Statistics Indonesia, 2015). Nevertheless, 

KSA still has a major disadvantage as the 

level of resources needed is considerable. 

On the other hand, remote sensing 

data can be obtained easily and could be 

applied to all kinds of fields (Triscowati, 

Sartono, Kurnia, Domiri, & Wijayanto, 

2019, 2020; Wijayanto, Triscowati, & 

Marsuhandi, 2020). Some examples of 

remote sensing utilisation are land cover 

classification (Ienco, Gaetano, Dupaquier, 
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& Maurel, 2017); poverty prediction (Jean, 

Burke, Xie, Davis, Lobell, & Ermon, 2016); 

burned area mapping (Fitriana, 

Suwarsono, Kusratmoko, & Supriatna, 

2020); and crop classification (Kussul, 

Lemoine, Gallego, Skakun, Lavreniuk, & 

Shelestov, 2016). 

In contrast to conventional field 

surveys, employing publicly available 

remote sensing data could lead to a more 

scalable, inexpensive, and real-time 

method. While studies on the application 

of Random Forest on multi-temporal 

Landsat 8 data have been conducted 

(Triscowati et al., 2019, 2020), the data 

and method used are still limited to 

Landsat 8 and Random Forest 

respectively. In this study, several 

machine learning methods were 

employed on Sentinel-2 and Landsat-8 

imagery to detect rice-production areas in 

order to provide a more affordable option 

for food monitoring. The study focus is on 

investigating the effect of different 

satellite image resolutions and model 

classifiers in improving detection 

accuracy. 

 

2 MATERIALS AND METHODOLOGY 

2.1 Location and Data 

This study was conducted in 

Nganjuk in East Java, a landlocked 

regency located at a latitude of 7.6°S and 

longitude of 111.9333°E, as shown in 

Figure 2-1. An area of approximately 

1.182,64 km2, 404,586 hectares, is 

covered by rice fields, with a production 

of 232,413 tons in 2018 (BPS-Statistics 

Indonesia, 2019). Although other 

regencies have higher rice production, 

the land in this area has certain 

distinctive characteristics, with both flat 

and mountainous regions. Even though it 

is landlocked, a relatively large river flows 

across the regency, and it is one of the 

regencies crossed by the Trans-Java 

highway.  

In this research, 2A-level-processed 

Sentinel-2 images acquired on 14 March 

2020 and Landsat-8 tier 1 surface 

reflectance acquired on 16 March 2020 

were used to perform the analysis and 

evaluation (Figure 2-1).  The sample used 

for each class, as well as the training data 

samples, are shown in Table 2-1 and 

Figure 2-2. 
 

Table 2.1: Number of pixels in sample data 
  

S2 (10) S2 (30) L8 

Built-up 16276 2663 2663 

Water 4904 825 825 

Agriculture 13364 1826 1826 

Fallow 18335 2653 2653 

Forest 17891 2302 2302 

Asphalt 3138 796 796 

Cloud 14847 1907 1639 

 

Sentinel-2 is a multi-spectral wide-

swath, medium-resolution imaging 

mission aimed at supporting Copernicus 

Land Monitoring studies involving the 

monitoring of vegetation, soil, and water 

cover, beyond the observation of 

aqueducts and coastal areas. With four 

bands at 10 meter, six bands at 20 meter, 

and three bands at 60 meter spatial 

resolution, the Sentinel-2 Multispectral 

Instrument (MSI) samples 13 spectral 

bands with a 5 day revisit period 

(European Space Agency, n.d.). The 

Sentinel-2 images used in this research 

were at a 10 meter resolution/S2(10) and 

rescaled 30 meter resolution/S2(30).
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(a) (b) 

 
Figure 2-1: (a) Landsat-8 image used in the study shown in true colour; (b) Sentinel-2 image 

used in the study shown in true colour. The black masking shows the border of the 
Nganjuk regency used as the study area. 

 
 

      
(a) (b) (c) 

      
(d) (e) (f) 
  

  

  

  (g)   
 

Figure 2-2: True colour imagery of each class, left-hand side from Sentinel-2, and right-hand 

side from Landsat-8. The classes from top to bottom are (a) built-up area, (b) water 
surface, (c) rice-field, (d) fallow, (e) forest, (f) highway, and (g) cloud coverages 

 

Landsat 8 Surface Reflectance (SR) 

Science Products are generated from 

specialised software called Land Surface 

Reflectance Code (LaSRC). It also has 

improved geometric accuracy by 

implementing  Sentinel 2 Global 

Reference Image (GRI) into Landsat 8 OLI 

ground control points. Landsat 8 SR is 

also equipped with seven visible bands 

and two thermal bands with a 30 meter 

spatial resolution and a 16 day revisit 

period (USGS, 2019). The features of each 

satellite can be seen in Table 2-2. 

The basic features used in this 

research are the blue, green, and red 

bands, together with the near-infrared 

(NIR), shortwave infrared 1 (SWIR1), and 

shortwave infrared 2 (SWIR2) bands. 

Several indices were also used, namely 

the Normalized Difference Vegetation 

Index (NDVI) and Enhanced Vegetation 

Index (EVI), which were used to help 

differentiate between field and forest. In 

addition, the Normalized Difference Water 

Index (NDWI) was employed to 

distinguish between water surfaces and 

cloud, and the Normalized Difference 

Built-up Index (NDBI), Normalized 

Difference Tillage Index (NDTI), and Bare 

Soil Index (BSI) were used to help 
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differentiate between fallows, built-up 

areas, and highways. The formulas 

related to these indices are: 

 

𝑁𝐷𝑉𝐼 =
𝑁𝐼𝑅 − 𝑅𝐸𝐷

𝑁𝐼𝑅 + 𝑅𝐸𝐷
 

 
(2-1) 

𝑁𝐷𝑊𝐼 =
𝐺𝑅𝐸𝐸𝑁 − 𝑁𝐼𝑅

𝐺𝑅𝐸𝐸𝑁 + 𝑁𝐼𝑅
 

 
(2-2) 

𝑁𝐷𝐵𝐼 =
𝑆𝑊𝐼𝑅1 − 𝑁𝐼𝑅

𝑆𝑊𝐼𝑅1 + 𝑁𝐼𝑅
 

 
(2-3) 

𝑁𝐷𝑇𝐼 =
𝑆𝑊𝐼𝑅1 − 𝑆𝑊𝐼𝑅2

𝑆𝑊𝐼𝑅1 + 𝑆𝑊𝐼𝑅2
 

 
(2-4) 

 

Two formulas can be used to count 

EVI, the first original formula being: 

𝐸𝑉𝐼 = 2.5 ∗
𝑁𝐼𝑅 − 𝑅𝐸𝐷

𝑁𝐼𝑅 + 6 ∗ 𝑅𝐸𝐷 − 7.5 ∗ 𝐵𝐿𝑈𝐸 + 1
 

 
(2-5) 

The second formula does not use the blue 

channel and is called EVI2: 

𝐸𝑉𝐼2 = 2.5 ∗
𝑁𝐼𝑅 − 𝑅𝐸𝐷

𝑁𝐼𝑅 + 2.4 ∗ 𝑅𝐸𝐷 + 1
 

 
(2-6) 

 
2.2 Decision Tree (CART) 

 The term Classification and 

Regression Tree (CART) (Breiman et al., 

1984) refers to decision trees for 

predictive modeling problems using both 

classification tree and regression tree 

analysis, creating a decision tree in which 

each node makes a binary decision to 

break up one class from another.  

 

2.3 Support Vector Machine 

Support Vector Machine (SVM) 

(Drucker et al., 1997) is a classifier that 

produces nonlinear bounds by devising a 

linear boundary in a big, altered version 

of the feature space. 
 

 

Table 2-2: Sentinel-2 MSI and Landsat 8 OLI instrument spectral band specification. 

 

Sentinel-2 MSI Level-2A 

Band Description Resolution (m) Wavelength (nm) 

B1 Aerosols 60 443.9 (S2A) / 442.3 (S2B) 

B2 Blue 10 496.6 (S2A) / 492.1 (S2B) 

B3 Green 10 560 (S2A) / 559 (S2B) 

B4 Red 10 664.5 (S2A) / 665 (S2B) 

B5 Red Edge 1 20 703.9 (S2A) / 703.8 (S2B) 

B6 Red Edge 2 20 740.2 (S2A) / 739.1 (S2B) 

B7 Red Edge 3 20 782.5 (S2A) / 779.7 (S2B) 

B8 NIR 10 835.1 (S2A) / 833 (S2B) 

B8A Red Edge 4 20 864.8 (S2A) / 864 (S2B) 

B9 Water vapor 60 945 (S2A) / 943.2 (S2B) 

B10 Cirrus 60 1373.5 (S2A) / 1376.9 (S2B) 

B11 SWIR 1 20 1613.7 (S2A) / 1610.4 (S2B) 

B12 SWIR 2 20 2202.4 (S2A) / 2185.7 (S2B) 
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Landsat-8 Surface Reflectance Tier 1 

Band Description Resolution (m) Wavelength (μm) 

B1  Ultra blue  30 0.435-0.451 

B2  Blue  30 0.452-0.512 

B3  Green  30 0.533-0.590 

B4  Red  30 0.636-0.673 

B5  NIR  30 0.851-0.879 

B6  SWIR 1  30 1.566-1.651 

B7  SWIR 2  30 2.107-2.294 

B10  Brightness temperature  30 10.60-11.19 

B11 Brightness temperature 30 11.50-12.51 

 
 
2.4 Ensemble Bagging Methods 

Bagging, or bootstrap, aggregation 

is an approach for decreasing the 

variance of an estimated prediction 

function. In high-variance, low-bias 

programs such as trees, bagging appears 

to perform particularly well. For 

regression, the same regression trees 

were fitted several times to bootstrap 

sample versions of the training data and 

the outcome averaged. For classification, 

a vote was cast by panels of trees for the 

predicted class. 

 

2.4.1  Random Forests 

Random forests (Breiman, 2001) 

are a modified version of bagging; they 

assemble a sizeable library of de-

correlated trees and then average them. 

Although very similar to bagging in 

performance in relation to many 

problems, random forests are easier to 

train and tune. This has led to their 

popularity and implementation in a 

variety of packages. 

 

2.4.2 Extra Trees 

 Extremely randomized trees (Geurts 

et al., 2006), also known as extra trees, 

fundamentally involve the vigourous 

randomisation of both attribute and cut-

point selection, while splitting a tree 

node. In extreme cases, randomised trees 

with independent architectures from the 

output values of the learning sample are 

constructed. Problem-specific tuning of 

randomisation strength can be made 

using the appropriate choice of 

parameter. 

 

2.5 Ensemble Boosting Methods 

The incitation of boosting aimed to 

create a very large “committee” by 

combining the results of numerous 

“weak” classifiers. The boosting approach 

bears similarity to bagging and other 

committee-based methods. A weak 

classifier is one with an error rate barely 

better than stray speculation. By 

consecutively applying this weak 

classification algorithm to continually 

altered versions of the data, a string of 

weak classifiers is created. Through a 

weighted majority vote, the predictions of 

these weak classifiers produce the final 

prediction (Hastie et al., 2013). In this 

study, the two most popular ensemble 

boosting methods, AdaBoost and 

XGBoost, were used as classifiers. 
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2.6 Classification Framework 

The classification framework for 

this study is described below. 

Step 1: Connect Google Colab to 

Google Earth Engine and Google Drive, 

and download Sentinel-2 and Landsat 8 

imagery of the study area. Since these 

satellites have different revisit times, the 

imagery used must be taken on dates 

close to each other. There is also a high 

chance that the imagery on the following 

date will have too much cloud cover to be 

usable. Since Sentinel-2 has other bands 

not available on Landsat-8, the bands 

used in this research will be limited to 

those available to both satellites. 

Step 2: Extract the pixel value of the 

area to be used as the sample. For 

Sentinel-2, the images will also be 

rescaled to 30m x 30m, the same 

resolution as Landsat-8, to allow a 

comparison of the classification results 

with the same scale and to observe 

whether the resolution will affect the 

classification results.  

Step 3: Add a composite index for all 

the imagery. 

Step 4: Perform classification of all 

the imagery. CART decision tree, CART 

decision tree with bagging, Random 

Forest, Extremely Randomized Trees, 

Logistic Regression, Linear SVM, 

AdaBoost decision tree, XGBoost tree, 

and linear were employed. For all 

classifiers in each imagery, perform k-

fold cross-validation with k=10. 

3 RESULTS AND DISCUSSION 

3.1 Data Exploration 

Based on the boxplot of each band 

on the seven classes, information about 

the extent to which each band 

differentiates the labels could be 

collected. It can be observed from Figures 

3-1, 3-2, and 3-3 that although each 

band could distinguish a certain class 

quite well individually, other classes 

continue to show similar values. It can be 

seen that NDVI could distinguish 

between rice fields and forests, but its 

value for other classes is similar. On the 

other hand, NDBI could distinguish 

between built-up areas and fallows, while 

other classes showed little difference. 

From further examination, it 

appears that even though NDBI could 

identify built-up areas and fallows from 

the rest of the class, it could not tell the 

differences between them. On the other 

hand, even though NDTI could not 

differentiate between built-up areas and 

highways, it had no problem in 

identifying the differences between the 

remaining classes. Hence, by combining 

these two composite indices, it was 

possible to discern built-up areas, 

fallows, and highways. Consequently, a 

classification model could be constructed 

by applying this logic to other bands in 

other classes. 
 

Sentinel-2 10m 
 

Green Band 
 

 

Blue Band 
 

  

Red Band 
 

   

NIR 
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Figure 3-1: Distribution of bands and composite index values per class with Sentinel-2 10m 
resolution 

 

 

Sentinel-2 30m 
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Figure 3-2: Distribution of bands and composite index values per class with Sentinel-2 30m 
resolution 
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Landsat-8 
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Figure 3-3: Distribution of bands and composite index values per class with Landsat-8 

 

 
Table 3-1: 10-fold cross-validation results of all models with Sentinel-2 10m resolution, 

Sentinel-2 30m resolution, and Landsat-8 for combined classes. 

Classification Model 
F1-Score Standard Deviation 

S2 (10) S2 (30) L8 S2 (10) S2 (30) L8 

Random Forest 0.971 0.930 0.919 0.002 0.006 0.007 

Decision Tree 0.952 0.906 0.888 0.003 0.006 0.010 

Decision Tree with Bagging 0.971 0.932 0.922 0.002 0.005 0.008 

Extra Trees 0.968 0.927 0.915 0.002 0.005 0.008 

Logistic Regression 0.942 0.919 0.911 0.003 0.005 0.008 

Linear SVM 0.803 0.814 0.834 0.037 0.010 0.017 

AdaBoost (Decision Tree) 0.954 0.932 0.929 0.014 0.006 0.005 

XGBoost (gbtree) 0.948 0.907 0.912 0.003 0.006 0.007 

XGBoost (gblinear) 0.673 0.622 0.641 0.006 0.017 0.013 

 
3.2  Model Results 

 All the classification models used 

went through a grid search for 

hyperparameter tuning to optimise the 

results of each. A comparison of all the 

classification methods for all the images 

can be seen in Table 3-1. The values 

displayed are the result of performing 10-

fold cross-validation, which means that 

the whole sample was split into ten 

partitions, nine of which were used as 

training data, and one as testing data. 

The training and testing process was then 

repeated ten times, with a different 

partition used as testing data. Based on 
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the table, the classification result for 

S2(10) is better than that for almost every 

other model. Classification of S2(30) and 

L8 did not show any significant 

difference.  

In line with this result, resolutions 

make a great contribution to the 

classification results, since both the 

S2(30) and L8 results do not show a great 

difference, while some models yield better 

results for S2(30) and others have a 

better outcome for L8. This indicates that 

when performed at the same scale or 

resolution, the results from S2(30) and L8 

do not show a significant difference. 

Table 3-2 shows that using random 

forest classification for S2(10) yields a 

significantly better result compared to 

S2(30) and L8 for the detection of rice 

production areas. Despite having an 

acceptable recall, both S2(30) and L8 

have inferior precision. While the model 

for S2(30) and L8 is good at recognizing 

rice fields based on the high recall value, 

the lower precision value describe that 

several other areas besides rice-field were 

predicted as rice-field. This could be quite 

problematic as it could lead to 

overestimation of rice production if areas 

which are not rice fields are identified as 

such. In this case, overestimation could 

be disastrous, because decision-makers 

would think that food stocks were 

sufficient when in fact they were not, 

which could lead to nationwide 

starvation. 
 

Table 3-2: Precision, Recall, and F1-score of each class for each image using random forest 
classification 

Class 
Precision Recall F1-score 

S2(10) S2(30) L8 S2(10) S2(30) L8 S2(10) S2(30) L8 

Built-up 0.97 0.91 0.95       0.94  0.88       0.92       0.95 0.90 0.94 
Water 1.00       0.97       0.98       1.00       0.94       0.95       1.00 0.95 0.96 
Rice-
field 

0.95       0.83       0.87       0.97       0.92       0.92       0.96 0.88 0.89 

Fallow 0.96       0.90 0.91       0.98       0.90 0.94       0.97 0.90 0.93 
Forrest 0.99       0.97 0.99       0.99       0.97 0.95       0.99 0.97 0.97 
Highway 0.90       0.85       0.90       0.88       0.80       0.83       0.89 0.83 0.86 
Cloud 0.99       0.98       0.96       0.98       0.96       1.00       0.98 0.97 0.98 

 
 

Table 3-3: Comparison of confusion matrix using random forest classification 

 

S2(10) 

 0 1 2 3 4 5 6 
0 1592 0 25 49 1 20 10 
1 0 478 0 0 0 0 0 
2 4 1 1306 14 17 0 0 
3 22 0 14 1816 0 0 1 
4 1 0 23 1 1744 0 0 
5 13 0 0 14 0 257 9 
6 12 0 2 3 0 7 1420 

 

S2(30) 

 0 1 2 3 4 5 6 
0 241 0 8 16 0 7 1 
1 0 73 3 2 0 0 0 
2 4 0 176 5 6 0 0 
3 5 2 15 234 1 2 1 
4 0 0 6 0 216 0 0 
5 9 0 2 4 0 64 1 
6 5 0 1 0 0 2 186 
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L8 

 0 1 2 3 4 5 6 
0 256 0 6 5 0 4 6 
1 1 89 2 2 0 0 0 
2 5 0 162 9 1 0 0 
3 3 2 9 253 1 2 0 
4 3 0 6 2 221 0 0 
5 2 0 2 6 1 57 1 
6 0 0 0 0 0 0 152 

 

Table 3-4: Feature importance of random forest model  
S2 (10) S2 (30) L8 

Blue 0.06387 0.06318 0.09400 

Green 0.05761 0.05050 0.07327 

Red 0.04344 0.04919 0.05385 

NIR 0.09967 0.10329 0.07722 

SWIR1 0.14596 0.14543 0.09278 

SWIR2 0.11893 0.13152 0.10989 

NDVI 0.06536 0.05647 0.06249 

NDWI 0.05696 0.05398 0.04558 

NDBI 0.04629 0.05845 0.06476 

 

Sentinel 2 (10) Sentinel 2 (30) Landsat 8 

   

Figure 3-4: Feature importance plot of random forest model 

 

From further examination of the 

confusion matrix from the previous 

classification (Table 3-3), it seems that 

the reason for the precision of S2(30) and 

L8 was from built-up land, fallow, and 

forest being predicted as rice fields. 

Because this problem does not appear in 

the S2(10) classification, it means that 

one of the possible reasons for this 

classification concerns the spatial 

resolution of the imagery. 

The samples for the research were 

taken in a polygon which consisted of 

vectors; when those vectors were applied 

to pixels, then the area included in the 

polygons would vary according to the 

pixel size. With a higher spatial resolution 

image, this method did not pose a real 

problem, since the area did not change. 

However, with lower spatial resolution 

images, the area taken as samples would 

change dramatically, as the size of each 

pixel would be significantly larger. As a 

result, areas that were not intended to be 

included were taken as samples, which 

then affected the value of the bands or 

indices used. A simple example would be 

the use of Sentinel-2 images. The native 

spatial resolution of some of the Sentinel-

2 bands is 10 meters per pixel; when this 

is rescaled to 30 meters per pixel, each 

new pixel contains nine of the original 

ones. The way Google Earth Engine 

handles this is by using the mean value 

of the native pixels as the value for the 

new ones (Google Developers, 2017). 
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Following this train of thought, 

there is a possibility that when the 

sample area is being taken using these 

polygons, some areas of other classes, 

specifically fallows, are taken as rice 

fields, and vice versa. This affects the 

value of the pixels included in the 

samples, leading to other classes being 

predicted as rice fields. 

In addition, information about the 

contribution of each feature used by the 

Random Forest model can be seen in 

Table 3-4 and Figure 3-4. The scores 

suggest that for S2(10) and S2(30), 

Random Forest found NIR, SWIR1, 

SWIR2, and NDTI to be the most 

significant features. Although the other 

features made contributions, these were 

not as significant as these four features. 

L8, however, shows that NDTI makes the 

most significant contribution, while the 

other features do not contribute as much. 

One point to keep in mind is that the 

importance of this feature was not 

applied to one specific class, but to all the 

classes used in the model. 

 
4 CONCLUSION 

After conducting a detailed 

experiment by evaluating a wide range of 

powerful machine learning methods in 

relation to Landsat-8 and Sentinel-2, we 

selected both Random Forest and 

Decision Tree with Bagging on Sentinel 2 

with 10 meters spatial resolution as the 

best performing machine learning 

classifier of satellite data for detecting 

rice production areas. The following 

conclusions can be drawn. 

Using higher resolution imagery 

could lead to an increase in classification 

accuracy. Furthermore, the scope of the 

class used and the extent to which the 

classification is performed can also be 

increased. Although the aim of the study 

was to detect rice production areas, it 

also shows the possibility of 

differentiating between normal built-up 

areas and highways by using an even 

higher resolution image, showing not 

only highways, but also the regular 

streets that are too small for Sentinel-2 

and Landsat-8. This could help in other 

fields of statistics.  

Utilising polygons to collect sample 

data for training purposes could make 

the collection of large amounts of training 

data easier. One issue to be wary of is 

that the data collected using this method 

could be noisy or may not match the 

intended class. 

Another issue to consider is that in 

this study, only bands available to both 

Sentinel-2 and Landsat-8 were used, 

although Sentinel-2 is equipped with 

several other bands, for example Red-

Edge. According to Frampton, Dash, 

Watmough, & Milton (2013) and Delegido, 

Verrelst, Alonso, & Moreno,  (2011),  

Sentinel-2 red B4 (665 nm) and the red-

edge B5 (705 nm) bands give great 

correlations during estimation of the leaf 

area index and chlorophyll content. 

Therefore, by utilising these spectral 

bands, not only can better classification 

of rice fields be made, but also rice growth 

phases. 
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