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Abstract. Weather Research and Forecasting (WRF) is a mesoscale numerical weather prediction model 
that can provide good rainfall prediction information. The accuracy of the initial conditions and the 
parameterization scheme used in the WRF model affect the quality of the resulting rainfall prediction. 
Therefore it is necessary to assimilate to optimize the accuracy of the initial conditions in the model 
using the Three Dimensional Variational (3DVAR) assimilation technique. The purpose of this study was 
to determine the effect of applying the 3DVAR assimilation technique with the surface, upper air, and 

satellite radiation observations in predicting the occurrence of heavy rain on October 20, 2020, in the 
Jambi region by first conducting a parameterization test of the cumulus and microphysical schemes. In 
this study, four experimental methods were used, namely no assimilation (NON), observation data 
assimilation (OBS), satellite radiation data assimilation (SAT), and satellite radiation and observation 
data assimilation (BOTH). Each experimental model result was then verified statistically and spatially 
to determine the effect of the applied data assimilation. The results of this study indicate that the 
combination of Grell-3D and Thompson schemes shows the best performance in predicting rainfall. 
Then based on the spatial analysis of the SAT experiment, it is known that it can improve the model's 
initial conditions on the temperature and pressure parameters. Meanwhile, based on statistical 
verification, the SAT experiment improved the accuracy of rainfall predictions with a better forecast skill 
score than other experiments tested. 
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1 INTRODUCTION 

Temporal and spatial estimation and 
rainfall prediction are essential for many 
users in various sectors, such as tourism 

and flood prediction (Bauer et al., 2015). 
The current rainfall's accuracy continues 
to improve from time to time to obtain 

adequate weather forecasting and early 
warning information. Various ways and 
methods are used to get accurate weather 

information, one of which is to use the 
fundamental equations of numerical 
weather prediction (NWP) (Golding, 

2013). NWP is currently still being 
developed to meet the need for accurate 
high-resolution weather forecasts. 

Weather Research and Forecasting 
(WRF) is a mesoscale numerical weather 

prediction model widely used in research 
and operational needs for weather 
forecasting (Burrahman et al., 2019). 

According to Cardoso et al. (2013), the 
WRF model can provide good information 
about rainfall. The atmospheric 

simulation stage by the WRF model 
consists of two stages: the configuration 

of the domain model, processing of the 

input data, and preparing the model's 
initial conditions, and the running 
forecast model (Powers et al., 2017). It 

should be noted that the initial and 
boundary conditions of a model that is 
run depend on the global interpolation 

model, which has low resolution and 
uncertainty and several sources of error. 
The existence of uncertainty from the 

initial conditions of this model has a 
substantial effect on the growth of errors 
generated by a model (Leutbecher and 

Palmer, 2008). Therefore, the accuracy of 
the model's initial conditions is 
something that needs to be considered as 

a determinant of the existing prediction 
results. 

One way to improve the initial 
conditions of a numerical model is to 
perform data assimilation (Skamarock et 

al., 2008). Data assimilation is a 
technique in which observational data 
are combined with NWP product, and 

their respective error statistics better 
estimate atmospheric conditions (NCAR, 
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2017). The application of assimilation in 
the WRF model consists of various 
techniques, one of them is the Three 

Dimensional Variational (3DVAR). The 
3DVAR technique performs better in 
producing a rational analysis of 

hydrometeorological events with greater 
computational efficiency than other 
techniques (Barker et al., 2004). Various 

types of observational data can be 
assimilated into the model's initial 

conditions, including synoptic, buoy, 
radiosonde, satellite, and radar 
observations (Skamarock et al., 2008). 

In the last decade, many studies on 
the assimilation of observational data 
have been carried out and have yielded 

promising results for improving model 
predictions. Assimilation of surface 
observation data during heavy rains in 

India can improve initial conditions 
characterized by increased accuracy of 
the location and amount of rainfall in the 

Indian monsoon region (Routray et al., 
2010). significant effect on wind 

parameters and a rain pattern close to 
the observation data, especially in the dry 
season (Rahma, 2020). These two studies 

show that the assimilation of surface and 
upper air observation data can improve 
the model's ability to predict rainfall. 

In addition to surface and upper air 
observation data, assimilation using 
satellite radiation data can also improve 

the prediction results of the model. The 
assimilation of the Advanced Microwave 
Sounding Unit-A (AMSU-A) and 

Microwave Humidity Sounder (MHS) 
satellite radiation is considered to 
improve model performance. It can 

provide valuable information related to 
temperature profiles that can increase 

the coverage of heavy rainfall predictions 
(Xie et al., 2018). According to Sagita et 
al. (2017), assimilation of AMSU-A and 

MHS satellite radiation data improves 
rainfall prediction in northwest Java, 
where the accuracy of rainfall prediction 

is better than the model without 
assimilation. 

To get better rainfall prediction 

results before carrying out the 
assimilation process, first, test the 
cumulus and microphysics 

parameterization to increase the model's 
sensitivity in predicting rainfall. 

According to Stensrud et al. (2015), 
parameterization is the most crucial 

component in the model, which 
influences the model output. Therefore, 
this study aims to determine the effect of 

improving the model's initial conditions 
by assimilation of surface, upper air, and 
satellite observation data in predicting 

rainfall in the Jambi region by first 
conducting parameterization tests for 
cumulus and microphysics schemes. The 

location and time of the incident were 
chosen during heavy rains in Jambi, as 

will be explained in more detail in the 
research methods section. 

 

2 MATERIALS AND METHODOLOGY 
2.1 Location and Data 

This research was conducted in 

Jambi and surrounding areas, with the 
boundaries of the research area covering 
0.143°-3.116°S and 100.924° - 

104,826°E (Figure 2-1). Meanwhile, the 
research was conducted on October 20, 
2020, when heavy rains up to 84 

mm/day were recorded on AWS Staklim 
Muaro Jambi.  

The data used in this study is Global 
Forecasting System (GFS) with a spatial 
resolution of 0.25° × 0.25° and a temporal 

resolution of 3 hours which is used as the 
initial condition. GDAS Satellite Radiance 
Data (AMSU-A and MHS) data in BUFR 

format and upper air and surface 
observation data from Global Upper Air 
and Surface Weather Observations in 

PREBUFR format as input for 
assimilation data provided by NCEP. 
Observation data from AWS Staklim 

Muaro Jambi, AWS Tj. Jabung Barat, 
AWS Bukit Baling, and AWS Stamet 
Sultan Thaha on October 20, 2020, with 

a temporal resolution of 10 minutes. 

2.2 Research Method 

Data processing in this study was 
carried out using the WRF-ARW and 
WRF-DA models version 4.2. The model 

is run for 24 hours, starting from 00.00 – 
24.00 UTC on October 20, 2020, with the 
first 12 hours used as spin-up time. Spin-

up time is the time required for the model 
to reach a stable condition. According to 
Montavez et al. (2017), the spin-up time 

is optimal if the model provides the most 
representative results within the shortest 
period. In this study, the model was run 

in 3 domains obtained through 
downscaling technique with a ratio of the 

model's resolution used is 1:3:3. The first  
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domain has a resolution of 27 km, the 
second domain is 9 km, and the third 
domain is 3 km with a center point using 

coordinates from AWS Staklim Muaro 

Jambi, namely 1.60111° South Latitude 
and 103.4944° East Longitude as shown 
in Figure 2-1. 

 

Figure 2-1: Research location 

 

Table 2-1: Model configuration  

Configuration Domain 1 Domain 2 Domain 3 

Horizontal Resolution 27 km 9 km 3 km 
Temporal Resolution 180 minutes 60 minutes 10 minutes 

Central Coordinates AWS Muaro Jambi (1.60111°S and 103.4944°E) 
Spin-up Time 12 jam 

Microphysics 
Schematics 

[1] Thompson 

[2] Lin 
[1] Thompson 
[2] Lin 

[1] Thompson 
[2] Lin 

Cumulus Schematics 
[1] BMJ 
[2] Grell-Devenyi 
[3] Grell-3D 

[1] BMJ 
[2] Grell-Devenyi 
[3] Grell-3D 

- 

Longwave Radiation 
Schematics 

RRTM RRTM RRTM 

Shortwave Radiaton 

Schematics 
Dudhia Dudhia Dudhia 

PBL Scheme YSU YSU YSU 
Land Surface Scheme Noah Noah Noah 

Parameterization of cumulus and 
microphysics schemes were tested to 
obtain the best configuration scheme. 

The cumulus parameterization schemes 
tested were Grell-Devenyi (GD), Betts- 
Miller-Janjic (BMJ), and Grell-3D (G3D), 

while the microphysics parameterization 
schemes were Thompson and Lin. The 
cumulus GD parameterization scheme 

was adopted from research conducted by 
Fadianika and Hariadi (2015). The GD 
scheme has the best sensitivity in 

predicting rain in almost all areas of East 
Java. Then the BMJ scheme was chosen  

because this scheme is suitable for use in 
humid environments, does not require 
many calculations, is the most efficient 

scheme to protect the microphysics 
scheme from creating convective clouds, 
and treats high convection better than 

other schemes (Kurniawan et al., 2014). 
The selection of the G3D scheme was 
based on research by Fatmasari et al. 

(2017), where this scheme is quite good 
at representing the dynamics of the 
atmosphere causing heavy rain in the 

Lampung region and producing rain 
predictions with good accuracy.  
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In this study, verification was gained 
statistically by comparing the model 
output of rainfall parameters with a 10-

minute temporal resolution to the rainfall 
data from four selected AWS. The 
statistical verification used includes 

correlation coefficient (CC), root mean 
square error (RMSE), accuracy, 
probability of detection (POD), bias score, 

false alarm ratio (FAR), and probability of 
false detection (POFD). Then, to 

determine the effect of the application of 
data assimilation on the model's initial 
conditions, an analysis of atmospheric 

conditions was carried out. Further 
analysis of atmospheric conditions was 
also carried out to determine fluctuations 

in atmospheric conditions before and 
during heavy rains. By comparing the 
four experiments tested, it will be known 

which experiments with atmospheric 
dynamics conditions best represent the 
occurrence of heavy rain in this study. 

3  RESULT 
3.1Parameterization Scheme 
Verification 

The best parameterization scheme 
was chosen based on the error value 
(RMSE) and the correlation value of the 

observations and predictions of model 
rainfall. According to Zhou and Mu 
(2018), the model error threshold value 

for rainfall parameters is divided into 
three categories, namely low (< 10 mm), 

medium (10-20 mm), and high (> 20 mm). 
Meanwhile, the correlation value ranges 
from -1 to +1, where the value of -1 is an 

excellent value indicating a negative 
linear relationship, and a value of 0 
indicates no correlation. In contrast, a 

value of +1 is an excellent value 
indicating a positive linear relationship 
(Wilks, 2006). The higher the correlation 

value indicates that the model can follow 
the observed data fluctuations. 

 
Table 3-1: Test results of the parameterized scheme using CC and RMSE values. The yellow cells show 

the lowest error and highest correlation. 

Locations  Index  
Schema 

1 2 3 4 5 6 

Stamet Sultan 
Thaha 

CC 0.937 0.922 0.934 0.921 -0.628 0.978 

RMSE 
(mm) 

15.341 18.521 16.019 22.224 25.215 6.702 

AWS Stakli 
Muaro Jambi 

CC 0.701 0.695 0.817 0.273 -0.235 0.878 

RMSE 
(mm) 

10.598 10.585 8.365 12.080 13.534 10.288 

AWS Bukit 
Baling 

CC 0.319 0.126 0.312 0.029 -0.546 0.362 

RMSE 
(mm) 

3.363 3.631 6.329 10.739 3.924 4.119 

AWS Tj. 

Jabung Barat 

CC -0.114 -0.078 -0.130 -0.147 -0.081 0.038 
RMSE 
(mm) 

1.738 1.736 1.738 1.748 2.203 7.678 

 

Based on the comparison of the 
results of the parameterization scheme 
test in Table 3-1, it can be seen that the 

prediction of rain on October 20, 2020, 
has different error and correlation values 
at each observation point. The lowest 

error value of 1,736 mm is found on AWS 
Tj. Jabung Barat with a correlation of -
0.078 using Scheme 2. Meanwhile, the 

highest error value of 25,215 mm is found 
at the Sultan Thaha Meteorological 

Station with a correlation of -0.628 using 
Scheme 5. The correlation value 
generated by all schemes on AWS Tj. 

Jabung Barat is negative, except for 

Scheme 6. Negative correlation values are 
also found in rainfall predictions using 
Scheme 5 at the four verifier points. The 

negative correlation indicates that the 
scheme cannot capture very little rainfall 
(Fatmasari, 2018). In addition, the 

negative correlation also indicates that 
the model cannot follow the fluctuations 
in the observed rainfall data. 

Overall, Scheme 6, a combination of 

Grell-3D and Thompson schemes, is 

considered the most capable of producing 

good rain predictions compared to other 

five schemes. The highest correlation 
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value indicates this at the four 

verification points obtained using 

Scheme 6. In addition, the error value in 

the rainfall prediction in Scheme 6 is low 

and meets the error threshold value, 

which is < 10 mm (Zhou and Mu, 2018). 

Furthermore, scheme six will be used in 

the process of assimilation and analysis 

in the next sub-chapter. 

 

3.2 Rain Verification by Point 

Observation 
On October 20, 2020, heavy rain had 

different intensities at the four verifier 

point locations, as shown in Figure 3-1. 
The intensity of rain produced by the SAT 
experiment shows a value close to the 

observed results, except for AWS Bukit 
Baling, where the measured rainfall 
intensity is minimal. Meanwhile, for the 

NON-experiment, the rainfall intensity on 
AWS Bukit Baling showed a much higher 
value than the observed results, but on 

AWS Tj. West Jabung NON and BOTH 
experiments did not detect any rainfall. 

Among the four experiments tested, the 
SAT experiment was considered more 
capable of producing rain intensity close 

to the observed results, especially at the 
Sultan Thaha Meteorological Station.

 

Figure 3-1: Histogram of rainfall accumulation on October 20, 2020, at four locations 
verifier 

 

Table 3-2 shows the correlation and 
RMSE values between the observed 
rainfall and the model output using the 

SAT, OBS, BOTH, and NON-experiments 
at four verifier points. Except for AWS Tj, 
the SAT experiment has a reasonably 

high correlation value. AWS Tj. Jabung 
Barat and AWS Bukit Baling are negative. 

Meanwhile, in the OBS and BOTH 
experiments, all correlations were 
negative. A negative correlation indicates 

that the model cannot capture much less 
rainfall (Fatmasari, 2018). When viewed 
from the overall error value, the SAT 

experiment has a minor error value at the 
four verifier points, which is < 10 mm 
(Zhou and Mu, 2018). This shows that the 

influence of satellite assimilation can 
improve the model's ability to predict 

rainfall, seen from the high correlation 
and low error values. 

 

 
 

  



International Journal of Remote Sensing and Earth Sciences Vol.19  No.1  2022.:39 –52  

 

44 
 

Table 3-2: Comparison of data assimilation test results for NON, SAT, OBS, and BOTH experiments 

using CC and RMSE values. The yellow cells show the lowest error and highest correlation 

Locations Index SAT OBS BOTH NON 

Stamet Sultan 

Thaha 

CC 0.969 -0.327 -0.328 0.994 

RMSE (mm) 6.021 27.124 25.776 12.836 

AWS Muaro Jambi 
CC 0.708 -0.155 -0.156 0.171 

RMSE (mm) 1.567 2.491 3.414 2.844 

AWS Bukit Baling 
CC -0.004 -0.119 -0.086 0.618 

RMSE (mm) 1.037 1.046 1.406 3.539 

AWS Tj. Jabung 
Barat 

CC 0.026 -0.016 -0.016 0.018 

RMSE (mm) 0.782 0.736 0.734 0.734 

 
Based on the histogram of the 

forecast skill score shown in Figure 3-2, 
it is known that the SAT experiment has 
an immense accuracy value, which is 

0.82. This indicates that 83% of all SAT 
experimental forecasts are accurate. For 
the POD parameter, it can be seen that 

the SAT and NON-experiments have a 
POD value of 1, which indicates that all 
observed rainfall events were predicted 

correctly by the two experiments. 
Meanwhile, for the FAR parameter, the 

smallest value is owned by the SAT 
experiment, which is 0.27. This shows 

that 27% of the predicted rain events did 

not occur. In this study, the 
determination of the experiment with the 
best performance was carried out by 

referring to the research conducted by 
Rahma (2020). The best investigation was 
obtained in this study by determining one 

stable experiment occupying the top 3 
positions on each index. The experiment 
with the best performance in predicting 

rainfall in this study is the SAT 
experiment. The investigation has the 

highest accuracy and POD and the lowest 
FAR compared to other experiments. 

 

 

Figure 3-2: Histogram forecast skill score on October 20, 2020 on AWS Staklim Muaro Jambi 

 

3.3 Increment Analysis 
Incremental analysis was conducted 

to determine the effect of assimilation on 

the model's initial conditions. The 
increment is obtained from the difference 
between the  assimilated  model's   initial  

 

 

conditions and those without 
assimilation. A positive value in the 
increment analysis indicates a change in 

the form of an increase in the value of a 
parameter. In contrast, a negative value 
indicates a decrease in the value. 
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Figure 3-3: Increment of air temperature 700 mb on October 20, 2020 at 15.00 UTC for 
a) SAT; b) OBS; and c) BOTH. The black circle indicates the Jambi region 

 

Figure 3-3 shows the results of the 

increment calculation for the 700 MB 
layer air temperature parameter on 
October 20, 2020, at 15.00 UTC. Based 

on the three experiments, it is generally 
seen that there is an increase in air 
temperature in the Jambi coastal area of 

0.5°C – 2.0°C. While in the central part of 
Jambi, there was a decrease in air 
temperature of 0.5°C – 1.5°C. The most 

significant change in air temperature 
among the schemes tested occurred in 
the SAT experiment. The increment of the 

SAT experiment showed an increase in 
temperature of 1.0°C – 2.0°C in the Jambi 

coastal area and a decrease in air 
temperature of up to 1.5°C in the central 
Jambi region. Meanwhile, the OBS and 

BOTH experiments showed almost the 
same pattern of temperature changes, 
where the resulting temperature changes 

were not as significant and as broad as 
the temperature changes in the SAT 

experiment. For the Jambi coastal area, 

the OBS and SAT schemes show a 
temperature increase of 0.5°C – 1.0°C, 
and for the central Jambi region, there is 

a 0.5°C – 1.0°C decrease in temperature.  
Based on the analysis of the 700 MB 

layer of air humidity increment, as shown 

in Figure 3-4, it can be seen that, in 
general, there is an increase in air 
humidity in the central part of Jambi and 

a decrease in air humidity in parts of the 
western part of Jambi. The SAT 
experiment showed a significant change 

in air humidity for the Jambi region, 
which increased by up to 20% in the 

central part of Jambi and decreased by 
up to 12% in the western part of Jambi. 
Meanwhile, the OBS and BOTH 

experiments experienced less significant 
changes in air temperature than the SAT 
experiments, where the temperature 

changes that occurred were relatively 
small within a narrow area.
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Figure 3-4: Increment of 700 mb layer humidity increment on October 20, 2020 at 15.00 UTC 

for a) SAT; b) OBS; and c) BOTH. The black circle indicates the Jambi region. 
 

The analysis of temperature and 
humidity increments shows that the SAT 
experiment produces more significant 
changes than the OBS and BOTH 

experiments, following research 
conducted by Kutty and Wang (2015), 
which states that the assimilation of 

satellite radiation data can change the 
profile of temperature and humidity. In 
the tropics, significantly. Meanwhile, the 

OBS and BOTH experiments showed less 
significant results because, in the Jambi 

region, there were no upper air 
observations; this is based on Fatmasari 
(2018). In this study, the OBS experiment 

could not produce significant changes in 
air temperature and humidity 
parameters because no additional upper-

air data could provide further information 
on the vertical air temperature and 
humidity profile. 

3.4 Atmospheric Condition Analysis 

Relative humidity (RH)  measures  

the relative value of water vapor in the air, 
where the higher the humidity value, the 
more saturated the air quality will be. If a 
particular area has high saturation or 

water content, it will support cloud 
growth activity (Tjasyono and Harijono, 
2006). The vertical RH condition on 

October 20, 2020, at 17.00 – 22.00 UTC 
in Figure 3-5 shows that the NON and 
SAT experiments tend to have the same 

RH state where the RH value before and 
during heavy rain is relatively high, 

namely 75 - 100% up to a layer of 300 
MB. This means that the air contains a 
lot of water vapor and has the potential to 

form convective clouds. While the OBS 
and BOTH experiments generally have 
almost the same pattern, at 14.00 – 16.00 

UTC, the RH value of 75 - 95% occurs 
from the surface to the 700 MB layer. 
Then when it rains, at 17.00 – 22.00, the 

RH value of 80-100% happens from the 
surface layer to a layer of 700 MB.
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Figure 3-5: Timeseries RH of surface layer up to 200 mb on October 20, 2020 at 12.00 – 23.00 UTC for  

a) NON; b) SAT; c) OBS; and d) BOTH. The black square line shows the time of heavy rain. 
 

The following parameter to be 
analyzed is convective available potential 
energy (CAPE). CAPE is an air parcel's 

energy when lifted vertically in the 
atmosphere. The CAPE value can indicate 
that the atmosphere is stable or unstable. 

The higher the CAPE value, the more 
unstable the atmosphere. The Timeseries 
CAPE at an altitude of 1000 - 500 MB in 

the NON, SAT, CTRL, and BOTH 
experiments (Figure 3-6) showed an 

increase in CAPE values up to a height of 
800 MB before the rain at 17.00 UTC and 
continued to decrease when it rained at 

17.00 - 22.00 UTC. It shows a reduction 
in the removal of energy when it rains. 
Satellite assimilation results show that 

the CAPE value is the most significant 
compared to other non-assimilation and 
assimilation, where the value reaches 

1700 J/kg at 14.00 - 15.00 UTC. 

 

 
Figure 3-6: Timeseries CAPE of surface layer up to 200 mb on October 20, 2020 at 12.00 – 23.00 UTC 

for a) NON; b) SAT; c) OBS; and d) BOTH. The white square line shows the time of heavy rain.
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The following parameter to be 
analyzed is the divergence. A positive 
divergence indicates a downward airflow 

movement, while a negative divergence 
indicates an upward trend of airflow. 
From October 20, 2020, from 17.00 UTC 

to 19.00 UTC, shown in Figure 3-7, it can 
be seen that the NON and SAT 
experiments from the surface layer to the 

700 MB layer were dominated by upward 
airflow with a value of -0.5x10-5 s-1 to -

2x10-5 s-1 to support the growth of 
convective clouds that reach that height. 
While in the layer above, the higher the 

layer, the value of negative divergence 
decreases. Furthermore, in OBS and 
BOTH, no significant airflow was 

observed. This is in line with research 
conducted by Rahma (2020), wherein the 
surface layer up to a layer of 200 MB and 

negative divergence values were 
observed, indicating convection activity. 

 
 

 
Figure 3-7: Timeseries of surface layer divergence to 200 mb on October 20, 2020, 12.00 – 23.00 UTC 

for a) NON; b) SAT; c) OBS; and d) BOTH. The black square line shows the time of heavy rain. 
 
 

 

The last parameter to be analyzed is 
cloud fraction. Cloud fraction is the 

percentage of each pixel in a satellite 
image or each grid box in a weather or 
climate model covered by clouds. Figure 

3-8 shows that before the rain (at 13.00-
16.00 UTC), the four experiments showed 
a cloud cover of up to 100%. This is under 

the analysis of air humidity, CAPE, and 
divergence, which indicate conditions 
that support cloud growth. 

However, it can be seen that the 
NON-experiment has more significant 

cloud cover than the other schemes 
because it shows cloud cover from 900 

MB to 300 MB layers. Meanwhile, when it 
rains (17.00 – 22.00 UTC), the NON and 
SAT experiments show the same pattern. 

In both experiments, it was seen that 
there was cloud cover from the surface 
layer up to 200 MB at 17.00 – 18.00 UTC. 

Then it began to decay at 19.00 UTC, 
marked by an increase in the lowest 
cloud base height observed. Meanwhile, 

the OBS and BOTH experiments showed 
the absence of low clouds when it rained. 
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Figure 3-8: Timeseries cloud fraction of surface layer up to 200 mb on October 20, 2020, 12.00 – 

23.00 UTC for a) NON; b) SATs; c) OBS; and d) BOTH. The black square line shows the time of heavy 
rain. 

 

 

4  CONCLUSIONS 

Based on research conducted by 
comparing the experimental outputs of 

NON, SAT, OBS, and BOTH in the case of 
rain on October 20, 2020, in the Jambi 
region, it can be concluded that the best 

scheme for predicting heavy rain is the 
combination of Grell-3D and Thompson 
schemes. The combination of these 

schemes can produce predictions with 
high correlation  and low error values 

compared to the other five schemes 
tested. Then the SAT experiment was 
judged to have better rainfall predictions 

than the other three experiments. The 
prediction results from the SAT 
experiment resulted in lower RSME and 

higher correlation and forecast skill 
scores. The increment analysis showed 
that the SAT experiment could 

significantly influence the temperature 
and humidity parameters compared to 
the other two experiments. In the 

analysis of atmospheric dynamics using 
the parameters of RH, CAPE, divergence, 

and cloud fraction, it is known that the 
SAT experiment can produce 
atmospheric dynamics that best 

represent heavy rain in the Jambi region 
This study only uses one case of 

heavy rain in the Jambi area. In future 

research, it is hoped that it will be able to 
select rain cases that are more evenly 
distributed in space and time scales. In 

choosing a parameterization scheme, 
long data is obtained and can represent 
rain events well. Dense in the Jambi 

region. Then in this study, only the 
assimilation of observational data and 
assimilation of satellite data with AMSU-

A and MHS sensors. In future research, it 
is possible to assimilate satellite data by 
adding other sensors and adding 

assimilation of radar data to obtain better 
rainfall predictions. 
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