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Abstract. Indonesia is a country that is prone to disasters especially earthquakes and volcanic eruptions 
because it’s located in the ring of fire. This type of disaster can produce another type of disaster which is: 
tsunami.  The nature of tsunamis that were hard to predict and arrive with little warning, Indonesians can 

minimize the effect of tsunamis by creating coastal protection. In this study we look for the location to 
create the coastal forest as an enhancement of the mitigation effort. We conducted our study in the 
Pangandaran district were a severe tsunami in the 2006 caused more than 400 deaths. We conducted a 
suitability analysis to identify tsunami-prone area based on the following criteria: should be had elevation 
<10m, slope gradient <2%, within proximity of 500m from the coastline, and <100m from river and should 
be settlement or urban area. The creation of a vulnerability map was using map algebra to calculate the 
weighted parameter from each class. Based our analysis using GIS analysis, the most vulnerable area in 
the Pangandaran district is the bay area, where we founded 1,419 acres of coastal area for which coastal 
forests could be planted to enhance protection against tsunamis.  
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1. INTRODUCTION  
Indonesia is highly susceptible to 

devastating tsunamis with a little advance 
warning with 5% of the global distribution 
of confirmed tsunamis occurring in 
Indonesia, primarily because it is located 
along the ring of fire where 90% of the 
world’s earthquakes occur (NOAA 2020, 
USGS 2009).  The most populous island in 
Indonesia, Java Island, was struck by 
tsunamis in 1994 and 2006 with the most 
severe impact occurring in the 
Pangandaran district. In this district 
alone, the tsunami caused 413 – 600 
casualties and displaced more than 
75,000. There were three major tsunami 
events occurred in 1840, 1867 and 1875 
in Java Island, this historic record 
indicates that Java Island there will be 
potential of the same disaster in the near 
future (Irsyam, et al. 2008). The tsunami 
was hard to escape as the affected area 
was close to the epicenter and lack of early 
warning and mitigation infrastructure 
(Fritz, et al. 2007, Mori, et al. 2007, NOAA 
2020).  

When a tsunami arrives in the 
coastal vegetation can typically function 

as a buffer against tsunami damage 
because tsunami energy is dissipated as it 
passes through the forest belt on the 
coastal beach (Zhang, et al. 2019).  

Enhancing coastal vegetation to 
reduce tsunami impacts could be one 
solution. One study examined the effect of 
coastal vegetation on reducing tsunami 
impact in Yogyakarta, Indonesia. They 
found that a 100 m wide swath of forest 
can reduce damages by up to 17.6% 
(Ohira, Honda and Harada 2012). A study 
focused on mangroves forests in Pakarang 
Cape, Thailand, found that under dense 
conditions with a 400m wide area, 
inundation depth was reduced by 30% for 
a 3 m wave height and a wave period of 30 
minutes. 

Nevertheless, the forest will be 50% 
damaged by 4.5m tsunami inundation 
depth, and more than 75% will be lost if 
the wave height reaches 6 m (Yanagisawa, 
et al. 2009). The effect of mangrove forest 
on the dissipation of the tsunami was 
determined by the steepness of the wave - 
the more vertical the wave front, the more 
expansive the mangrove forests must be to 
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significantly reduce its energy (Didit, 
Husrin and Latifah 2019).  

The damping effect of vegetated 
shorelines decreases the tsunami velocity 
and the force both in and behind the forest 
belt (Zhang, et al. 2019). Coastal 
communities may be able to enhance 
nature-based protection by keeping, 
managing, and restoring coastal 
vegetation including mangroves, wetlands, 
and other coastal forests (Tanaka, et al. 
2009). Even though coastal vegetation 
does not provide complete protection to 
the coastal area, it can substantially 
reduce damages. In the 2004 Indian 
Ocean Tsunami, in the Cuddalore District, 
Tami Nadu, India villages sheltered behind 
mangrove forests experienced much less 
damage than villages along the coast. 
(Danielsen, et al. 2005). 

Natural coastal protection using a 
coastal forest involves less initial capital 
investment and offers more ecological 
value than artificial structures. Coastal 
forests are suitable for locations with 
relatively low wave energy (Diposatono 
2008). People can use coastal forests as 
artisanal fisheries to provide food and to 
generate income for coastal communities 
as well as promote ecotourism (McNallya, 
Uchida and Gold 2011).  Coastal forests 
can improve the natural protection for the 
shoreline by dissipating the tsunami 
waves, simultaneously trapping the 
sediment, stabilizing the shoreline, and 
enhancing the coastal zone's ecology and 
socio-aspects of the coastal zone (CEM 
2006). 

Combining coastal vegetation, 
dunes, coral reefs, mangroves, and 
different natural coastal ecosystems can 
be an environmentally friendly and 
sustainable management strategy to 
mitigate tsunami and other coast-related 
natural disasters in developing country 
contexts (Fernando, et al. 2011). 
Constructing natural protection takes 
more time than concrete-based protection. 
However, the interval between tsunamis is 
typically longer than the period required 
for forest development. Therefore, more 
consideration of the planting and 

management of coastal vegetation from 
the viewpoint of landscape and urban 
planning based on scientific studies is 
necessary (Tanaka, et al. 2009). 

At the minimum, a coastal 
vegetation belt should be 20 m wide and 
consist of trees pine trunk diameter of 13 
cm and mean spacing between trees of 1.6 
m to stop the debris flow such us: boats, 
jetty. However, it does not reduce tsunami 
flow (MoMAF, 2012). The coastal forest is 
providing a protection function against 
tsunami damage. The severity of damage 
of settlement and other infrastructure by 
drifted boats can be minimized with the 
existence of coastal forests. However, if 
they disappear from the coastal area the 
damage will be increased (Miyagi, 
Yanagisawa and Baba 2013).  

This study will use GIS analyses to 
assess potential tsunami hazards and 
existing coastal conditions (e.g. settlement 
size, elevation conditions, distance from 
escape road, forest condition. This study 
aims to find suitable areas to preserve or 
establish new coastal forests in Southern 
Java to protect against tsunamis. The 
analysis will be focusing on the 
vulnerability level of the Pangandaran 
coastal area. 

  
2. MATERIAL AND METHOD 
2.1 Location and Data 

The study will be conducted on the 
Pangandaran District located on the south 
coast of West Java province Indonesia, 
wherein 2006 was hit by a tsunami shown 
in Figure 1. It lies between 7⁰24’0” - 
7⁰54’20” S and 108⁰8’0” - 108⁰50’0” E. 
Pangandaran district is a semi-enclosed 
bay district, it has 91 km coastline, and is 
connected to the Indian Ocean in the 
South. Pangandaran is prone to tsunamis 
(Reese, et al. 2007) because there a 
subduction zone located southern of 
Pangandaran District. This is an active 
subduction zone where some undersea 
earthquakes that occur in the area 
generate earthquakes that cause 
tsunamis (Bilek and Lay 2002).  
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Figure 1. Pangandaran district, West Java Province, Indonesia 

 

This study requires the use of 
synthesizing various geospatial data to 
obtain quantitative variables for the 
suitability analysis. The geospatial data 
that will be used on the analysis are 
coastline, elevation, land use (e.g. 
settlement, forest, farm field, shrub), and 
slope. The data of this study was obtained 
from the official website of the data source 
shown in table 2 

2.2  Standardization Data 
Parameters of coastal vulnerability 

will be used in the weighted classification 
method (Table 1). The analysis will be 
performed with ArcGIS Desktop 10.7 
version to find the location suitable for 
planting the coastal forest for coastal 
protection. The study area will be 
constrained based on several parameters, 
such as the settlements and urban area, 
located within 500 m from the coastline, 
have an elevation below than 10m, have 
gradients between 0-2% and also the 
distance from the river is less than 100m.  
 

Table 1. Data source and resolution 

No. Type data Source Resolut
ion 

1. ● Elevati
on 

● Slope 

 Shuttle Radar 
Topographic 

1 Arc-S 
(30 

meters) 

Mission 
(SRTM) 

2. ● Land 
use 

Landsat 8 
OLI/TIRS path 
121/row 65, 
Scene date 
2019/11/15  

30 x 30 
m 

3.  ● Coastli
ne  

● River 

Indonesia 
Geospatial 
Info. Agency 

1:25.0
00 

 
2.3  Methods 

In the analysis to create the 
weighted matrix classification, we will use 
the model builder in the ArcGIS. The data 
analysis steps outline is divided into 4 
steps. Firstly, the data preparation where 
the dataset will be clipped into the study 
area location using extract by mask tool 
for raster dataset and clip tool for the 
vector dataset. Additionally, the 
projections will be set into the same 
coordinate systems (WGS 1984 UTM Zone 
49S) using the project tool. Secondly, the 
dataset will be assigned into each class 
parameter using the reclassify tool for the 
DEM data to get the elevation and slope 
classification score, then the distance 
from the river and distance from the 
coastline parameter will be analyzed using 
the Euclidean distance tool to change the 
vector dataset into raster dataset, for the 
land use data we will be assigned the score 
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based on each land use type. Finally, after 
we get the score for each parameter will be 
used the matrix for further analysis to get 
the final suitable area for planting the 
coastal forest. 

 The matrix indicates weights and 
scores for the parameters. Parameters 
were assigned equal weights of 20% and 
vulnerability scores ranging from 1 – 4 
(low, moderate, high, and very high).  The 
class value was then calculated with the 
following formula 1 (Muzaki 2008): 

𝑁 = ∑ 𝐵𝑖 𝑥 𝑆𝑖 ………..(1) 

N = total class value, Bi = weight on each 
parameter, Si = Score on each parameter.   

Formula 2 below will be used to get 
the final vulnerable area that needs to be 
protected from the tsunami disaster: 

 
(("%𝑒𝑙𝑒𝑣𝑎𝑡𝑖𝑜𝑛% ∗ "0.2)+(%distance from the 
coastline%*0.2)+(%distance from the 
river%*0.2)+(%𝑙𝑎𝑛𝑑 𝑢𝑠𝑒% ∗ 0.2)+("%𝑠𝑙𝑜𝑝𝑒%" ∗
0.2))........................ (2) 
 

 

Table 2.  Coastal vulnerability against tsunami impacts (Faiqoh, Gaol and Ling 2013) 

No. Parameters Weight 
(%) 

Very High 
vulnerability  

High 
vulnerability 

Moderate 
vulnerability  

Low 
Vulnerability  

1 Elevation 20 <10m >10-25m >25-100m >100m 

2  Distance from 
the coastline  

20 <500 m >500-1000 m >1000-3000m >30000m 

3 Distance from 
the river 

20 <100 m >100-200 m >200-300 m >300 m 

4 Land use 20 Settlement or 
urban area 

Agricultural 
field 

Shrub or 
barren land 

Forest 

5 Slope 20 0-2% 2-5% 5-15% >15% 

 Total/Score 100 4 3 2 1 

The SRTM data will be used for the 
analysis of the slope and elevation 
parameters. The SRTM data will be 
extracted onto the study area dataset, 
then processed using the slope tool to get 
the slope gradient for the Pangandaran 
area, after we get the slope gradient, we 
are dividing the slope into each class of 
vulnerability using the reclassify tool. 
Furthermore, for the elevation dataset, 
we directly use the reclassify tool to get 
the class vulnerability for each elevation. 

In this study, land use 
information was created using an 
unsupervised iso cluster tool on Landsat 
8 OLI/TIRS C1 dataset, we created 50 
clusters and then assigned every cluster 
on each pixel with a value of 1 is 
settlements and urban area, 2 is 
agriculture area, 3 is a shrub and barren 
area, and 4 is forest area. The data vector 
data will be converted to a raster using 
the Euclidean distance tool after we get 

the raster dataset. The data will be 
reclassified into each class based on 
table 3 conditions. Furthermore, the 
dataset will be processed to get the final 
suitability area using the map algebra 
tool. 

 
3  RESULTS AND DISCUSSION  
3.1  Elevation 

The coastal elevation has a major 
role in the severity impact of a tsunami 
disaster, it makes coastal community 
located in the low elevation area is prone 
to the tsunami disaster. The impact of 
the tsunami inundations on the low 
elevation area can be shown as the 
sediment deposit founded in that area 
after the tsunami water receding, and 
the destruction of the buildings, boats, 
and fishing nets (Chadha 2007). To 
assess the different elevations of the 
Pangandaran district in this study we 
created the elevation vulnerability score 
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based on table 2. The result as shown in 
figure 2 below reveals that elevation 
classification on the northern part of 
Pangandaran is dominantly highland 
areas which have a low vulnerability 
score with a total area of 161,255 acres. 
The very high and high vulnerability area 
have a total area size of 28,709 acres and 
32,025 acres respectively, this area is 
dominated the area within proximity 4 
km from the coastline and most of the 
Pangandaran district bay have low 
elevation. The greater the vulnerability 
index the greater the area will be 
inundated by the run-up of the tsunami, 
and vice versa (Faiqoh, Gaol and Ling 
2013). Thus, making the lower area near 
the coastline a susceptible area to 
tsunami disasters.  

 
Figure 2. Pangandaran elevation classes. 

 
3.2 Distance from coastline 
vulnerability  

The analysis was carried to divide 
the vulnerability of certain areas 
proportional to its distance from the 
coastline. Using 500m, 1000m, 2000m, 
and >3000m for each parameter this 
study had created four buffer zone 
regarding the vulnerability level of the 
area based on its distance from the 
coastline as shown in figure 3. The 
highest causalities and damaged 
property from tsunami disaster were in 
the first 100m distance from the 
coastline. The most compelling impact of 
the tsunami destruction was manifested 
in the accumulation of debris (e.g. 
boulders, tree branches, building 
material, and boats) along the coastline 
and within the bay because the tsunami 
force swept them inland, thus making 

area near the coastline have higher 
tsunami vulnerability than area further 
inland (Bryant, et al. 1997). The 
Pangandaran coastline morphology 
which is a bay type coast is more prone 
to tsunami disaster because its 
morphology can amplify the tsunami 
wave height and result in more severe 
damage to the coastal area (Yeh, et al. 
1994) 

 
Figure 3. Distance from the coastline classes. 

 
3.3 Distance from river 
vulnerability 

Tsunami has been long known 
that they also propagated far upstream 
into the river and then damaging the 
inland infrastructure. The morphology of 
the tsunami wave propagates without 
changing its shape and speed in a 
straight channel. The failure of a river 
embankment to mitigate the tsunami 
inundations was evident from a tsunami 
that struck the Kanto region in Japan in 
2011 (Tanaka, Yagisawa and Yasuda 
2012). Another potential impact is that 
tsunamis can bring seawater up to 5 km 
inland which can damage river 
ecosystems and urban areas around 
along river channel. The reason for the 
damage was due to the significant 
increase of the salination and flooding 
which occurred in Sri Lanka during the 
2004 tsunami event (Amaratunga and 
Fowler 2007). Based on the analysis we 
found that the coastal area of 
Pangandaran district has significant 
river distribution and downstream as 
shown in figure 4 below, where the 
channel is a meandering type of 
morphology and most of the settlement 
in the coastal area located in the 100 m 
proximity from the river. The total area 
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covered by each vulnerability classes is 
27,7981 acres, 28,241 acres, 63,383 
acres, and 137,104 acres, which is 
correspondent with the vulnerability 
class of very high, high, moderate, and 
low respectively.  

 
Figure 4. Distance from river classes. 

 
3.4 Land use  

Detailed information of the land 
use conditions such as urban zone 
which is corresponded with population 
distribution and density is a major factor 
of the tsunami vulnerability analysis. 
This information is a requirement to 
create a mitigation strategy and disaster 
readiness in case of tsunami occurrence 
(Theilen-Willige, et al. 2014)., The results 
from our analysis are four land 
classifications which are: Settlement 
area or urban area (very high 
vulnerability), Agricultural field (high 
vulnerability), Shrub or barren land 
(moderate vulnerability), and Forest area 
(low vulnerability) as shown in figure 5. 
The very high vulnerability score mainly 
located in the bay of Pangandaran 
proximity, and northeast further inland 
which is correspondent with the high-
density settlement or urban area with 
area size of 20,252 acres which are only 
cover 7% of the total Pangandaran 
district land use. The existing forest in 
the Pangandaran district is worth 
nothing because the forest covers 
67.71%, which is the amount of 188.047 
acres. However, the coastal area in 
Pangandaran Bay where most of the 
coastal settlement located are lack of 
forested area. The settlement area in the 
western part of Pangandaran is located 
further inland and protected by the 
existing forest in that area. 

 
Figure 5. Pangandaran land use classes. 

 
3.5 Slope vulnerability 
An understanding of the geophysical of 
the coastal morphology is essential to 
understand the relationships between 
tsunami run-up height and inundation 
extent. The gentler the slope, the higher 
vulnerability to the tsunami inundations 
(Murthy, et al. 2007). The slope 
morphology of the Pangandaran coast 
which is dominated by <2% and >2%-5% 
slopes were categorized as a gentle slope 
and 5-15% gradient is classified as a 
moderate slope (Sikdar, et al. 2004), with 
a severity level very high, high, and 
moderate vulnerability score respectively 
based on the parameter that was created 
for this study. The total area of these 
three categories covers only 30% of the 
Pangandaran district slope, in contrast 
with the low vulnerability score that has 
a slope >15% dominated 60% of the 
Pangandaran district as shown in figure 
6. However, the gentler slope that has a 
higher vulnerability score is located in 
the coastal area, which is more 
susceptible to tsunami attack.   

 
Figure 6. Pangandaran slope classes. 
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3.6 The vulnerability area 
The analysis results are shown in Table 
4 below, based on the analysis we found 
that 7.05% very high vulnerability with 
the total area for each class are 96,259 
acres. Tsunami waves represent extreme 
often catastrophic events, which 
significantly and adversely impact 
coastal areas. Despite the lower 
frequency of occurrence comparing to 
storms and storm-induced surges, 
tsunami-induced coastal flooding often 
leads to massive casualties and 
tremendous economic losses. The 
potential damage from a tsunami is the 
result of its run-up to the inland area. 
The run-up distance of seawater 
inundations to the inland area is directly 
related to the inland elevation, distance 
to the coastline, distance to the river, 
land use patterns, and coastal slope 
(Kurian, Prakash and Baba 2007). Using 
all the parameters that we produced 
from our model subsequently we 
identified the most vulnerable locations 
within 500 m from the coastline. We 
found that the most vulnerable areas 
located in the coastal area of 
Pangandaran District is shown in figure 
7below with the location size for each 
class are 1,277 acres, 4,634 acres, and 
1,419 acres with the priority level from 
low, moderate, and high respectively.  
 

 
Figure 7. The proposed area to create the 

Pangandaran coastal forest 
 

Data on soils and wave energy 
were unavailable for the study area and 
so could not be included in this analysis. 
The choice of vegetation type used for 

protection (e.g. mangrove or another 
plant species) should be decided based 
on location (proximity to the coastline) 
and soil type. However, vegetation that 
can be used for the coastal to create the 
coastal forest are R. mucronate, A. 
marina, (Anwar 2007).  

4 CONCLUSIONS 
A tsunami is a rare disaster that 

we cannot predict because its origin is 
usually from another disaster like an 
earthquake or underwater volcanic 
eruption. However, the severity of this 
disaster is severe, furthermore, 
Indonesia is prone to the tsunami 
disaster, especially on Java Island. We 
cannot avoid this kind of disaster; 
therefore, this study is trying to give 
input for the mitigation plan by creating 
a natural defense in the form of creating 
a coastal forest in the Pangandaran 
district to face the future threat of 
tsunami occurrence. Based on our 
findings we found that the Pangandaran 
district has 1,419 acres of the coastal 
area that is needed immediate protection 
from the tsunami. 
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