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Abstract. Remote sensing technology can be used to find out the potential of mangrove forests 
information. One of the potentials is to be able to absorb three times more CO2 than other forests. CO2 
absorbed during the photosynthesis process, produces organic compounds that are stored in the 
mangrove forest biomass. Utilization of remote sensing technology is able to detect mangrove forest 
biomass using the density level of the vegetation index. This study focuses on determining the best AGB 
model based on the vegetation index and the ability of mangrove forests to absorb CO2. This research 
was conducted in Benoa Bay, Bali Province, Indonesia. The satellite image used is Sentinel-2. 
Classification of mangroves and non-mangroves using a multivariate random forest algorithm. 
Furthermore, the mangrove forest biomass model using a semi-empirical approach, while the estimation 
of CO2 sequestration using allometric equations. Mean Absolute Error (MAE) is used to evaluate the 
validation of the model results. The classification results showed that the detected area of Benoa Bay 
mangrove forest reached 1134 ha (OA: 0.98, kappa: 0.95). The best AGB estimation result is the DVI-
based AGB model (MAE: 23.525) with a value range of 0 to 468.38 Mg/ha. DVI-based AGB derivatives 
are BGB with a value range of 0 to 79.425 Mg/ha, TAB with a value range of 0 to 547.8 Mg/ha, TCS 
with a value range of 0 to 257.47 Mg/ha, and ACS with a value range of 0 to 944.912 Mg/ha. 
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1 INTRODUCTION 

Mangrove forests play an important 
role in coastal communities and are one 
of the most diverse ecosystems in the 
world (Worthington et al., 2020; Iqbal, 
2020). The current problem is 
deforestation and degradation of 
mangrove forests, it contributes to 
increase the concentration of carbon 
dioxide (CO2) in the atmosphere 
(Murdiyarso et al., 2015). According to 
Donato et al., (2011), mangrove forests 
are able to absorb three times more CO2 
than other forests. For this reason, 
sustainable protection efforts for 
mangrove forests are necessary. 

Obtaining information quickly related 
to the amount of biomass, carbon, and 
CO2 absorption in mangrove forests is 
one of the sustainable protection efforts 
for local governments in making 
decisions. The utilization of remote 
sensing data is the right solution for the 

desired speed of information. For this 
reason, the best model was built using 
Sentinel-2 data combined with field 
biomass data (Heumann, 2011).  
Research related to the use of Sentinel-2 
data for biomass and carbon information 
has been carried out by Sibanda et al., 
(2015), Castillo et al., (2017), and Pham 
et al., (2018), but in this study it has not 
been developed until information on CO2 
absorption. 

Mangrove forest that has high CO2 
absorption potential is Benoa Bay 
mangrove. The geographical location of 
Benoa Bay is in the urban and tourist 
center of Bali Province. So it is very 
susceptible to damage. 

The current problem of the Benoa 
Bay mangrove forest is the potential for 
damage due to the development of 
coastal areas in the last decade (Sugiana 
et al., 2022). This situation threatens to 
reduce the CO2 absorption area, 
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especially in the south of Bali Province. 
This study aims to determine the best 
model for estimating above ground 
biomass (AGB) based on the vegetation 
index and the ability of mangrove forests 
to absorb CO2. Therefore, it is necessary 
to research information on CO2 
absorption of mangrove forests in Benoa 
Bay as a suggestion for local 
governments (especially Ngurah Rai 

Details of the Sentinel-2 data 
utilization method used to build the 
estimation information of total carbon 
stock and the amount of CO2 
sequestration in mangroves were 
schematically presented in Figure 2-1. 

Figure 2-1:  The flowchart of study methods 

Bay, Bali as shown in Figure 2-2. 
Geographically, Benoa Bay is located 
between 8º41’55”S to 8º48’6”S and 
115º10’22”E to 115º15’12”E. Based on 
the Decree of the Minister of Forestry 
Number: 544/Kpts-II/1993 dated 
September 25, 1993, the area of 
mangrove forest in the area reaches 
1,373.5 ha. 

 
Figure. 2-2: Location of the research area from 
composites RGB false color (NIR, SWIR, Red) 

The Data used in this research is 
Sentinel-2 composite (January – 
December 2020) cloud-free. The data 
was obtained from the Research Center 
for Remote Sensing, BRIN as the official 
institution in image data acquisition in 
Indonesia. 

Furthermore, for the classification 
of mangroves and non-mangroves using 
the random forest (RF) method. 
Validation test using confusion matrix 
because it has good accuracy (Han et al., 
2012). 

taken according to the conditions of the 
field. The plot size at each point was 
10x10 meters. Data collection on the plot 
includes species identification and 
measurement of diameter at breast 
height (DBH). According to Pearson et al., 
(2005), DBH was measured as high as 
1.3 meters (adult chest height). 
 

Forest Park) so that the natural 
ecosystems can be maintained. 
 
2 MATERIALS AND METHODOLOGY 
2.1 Methods 

2.2 Location and Data 

The research is located in Benoa 

2.3 Field Data Collection 
In this study, 40 sample points were 
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Sentinel-2 is the basis for making an 
estimation model of mangrove forest 
biomass. The vegetation index used 
includes: 
- Normalized Difference Vegetation 

Index (Rouse et al., 1973; Ramdani et 
al., 2018), 

𝑁𝐷𝑉𝐼 =
𝑁𝐼𝑅−𝑅𝑒𝑑

𝑁𝐼𝑅+𝑅𝑒𝑑
   (2–1) 

- Enhanced Vegetation Index (Huete et 
al., 2002), 

𝐸𝑉𝐼 = 𝐺
(𝑁𝐼𝑅−𝑅𝑒𝑑)

(𝑁𝐼𝑅+𝐶1∗𝑅𝑒𝑑−𝐶2∗𝐵𝑙𝑢𝑒+𝐿)
 (2–2) 

Coefficient: G: 2.5, C1: 6, C2: 7.5, L: 1 
- Difference Vegetation Index (Hong-wei 

et al., 2019), 
𝐷𝑉𝐼 = 𝑁𝐼𝑅 − 𝑅𝑒𝑑   (2–3) 

validation 
The data is divided into 2, namely 

After getting the estimated AGB 
value, then the BGB estimate can be 
derived using the equation developed by 
Cairns et al., (1997). 

Calculation 
TAB is the total of AGB and BGB, 

(ACS) 
ACS is calculated using the equation 

suggested by the IPCC, (2001) as follows: 

𝐴𝐶𝑆 = 3.67 ∗ 𝑇𝐶𝑆   (2–7) 

ACS = the Amount of CO2 Sequestration 
(Mg/ha), TCS = the value of total carbon 
stock (Mg/ha). 

Table 2-1: Allometric equations used in this study to determine AGB (D is tree DBH in cm; ρ is wood 

density in g cm-3) 

Species Equation Wood density (ρ)a 

Bruguiera gymnorhiza 0.0754 ∗ 𝜌 ∗ 𝐷2.505 0.741 

Rhizophora apiculata 0.043 ∗ 𝐷2.63 0.8814 

Rhizophora mucronata 0.128 ∗ 𝐷2.60 0.94 

Sonneratia alba 0.3841 ∗ 𝜌 ∗ 𝐷2.101 0.6443 

Xylocarpus granatum 0.1832 ∗ 𝐷2.2 0.6721 

Reference: Fromard et al., (1998) Komiyama et al., (2005), Kauffman & Cole (2010) 

 

 

2.4 Vegetation Indices 

The vegetation index generated from 

 
2.5 Above Ground Biomass (AGB) 

The calculation of the AGB estimate 
uses an allometric equation that has 
been designed for Asian mangroves 
(Table 2-1). DBH is used in the AGB 
calculation input (Kumar & Mutanga, 
2017). In this study, AGB was calculated 
for each species. 
 
2.6 AGB Model Development 

AGB estimation approach is 
calculated using a linear regression 
model with the dependent variable is 
AGB and the independent variable is the 
vegetation index 
 
2.7 Accuracy assessment and model 

75% for building the model and 25% for 
validation. The accuracy of the model 
uses the coefficient of determination (R2) 
with the best results (> 0.8). Field data 
(25%) is used for validation, then Mean 
Absolute Error (MAE) is used in 
calculating the error value. The best 

model of the vegetation index (NDVI, EVI, 
DVI) is selected and the next process is 
carried out. 
 
2.8 Below Ground Biomass (BGB) 

𝐵𝐺𝐵 = 𝑒𝑥𝑝(−1.0587 + 0.8836 ∗ 𝐿𝑛(𝐴𝐺𝐵))  (2–4) 

BGB = the value of bellow ground 

biomass (Mg/ha), AGB = the value of 

above ground biomass (Mg/ha). 

 

2.9 Total Accumulated Biomass (TAB) 

can be calculated by the following 
equation: 
𝑇𝐴𝐵 = 𝐴𝐺𝐵 + 𝐵𝐺𝐵   (2–5) 
TAB = the value of total accumulated 
biomass (Mg/ha) 
 
2.10 Total Carbon Stock (TCS) 

TCS can be calculated using the 
equation developed by Westlake, (1963) 
as follows: 
𝑇𝐶𝑆 = 𝑇𝐴𝐵 ∗ % 𝐶 𝑂𝑟𝑔𝑎𝑛𝑖𝑐  (2–6) 
TCS = the value of total carbon stock 
(Mg/ha), TAB = the value of total 
accumulated biomass (Mg/ha), %C 
organic based on the rules published in 
the Indonesian National Standard (2011) 
7724:2011, in which 0.47 or 47% of 
biomass is carbon. 
 
2.11 Amount of CO2 Sequestration 
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3   RESULTS AND DISCUSSION 
3.1 Image Classification and 

Identified Mangrove Species 
The research area is focused on 

Benoa Bay, Bali Province. The satellite 
image used is Sentinel-2 composite 
(January – December 2020) cloud-free. 
The mangrove area found was 1134 ha. 
The validation test results obtained are 
Overall Accuracy (OA) of 0.98 with a 
kappa coefficient of 0.95. 

The species found at the research 
site were Rhizophora apiculata, 
Rhizophora mocrunata, Sonneratia alba, 
Xylocarpus granatum, and Bruguiera 
gymnorhiza. The dominant species was 
Rhizophora sp., this is in accordance 
with the statement of Cerón-Souza et al., 
(2010), namely Rhizophora sp. mostly 
found in tropical coastal areas. 
 
3.2 AGB Image-estimated and 

predictive mapping 
The vegetation index describes the 

greenness of the vegetation object. The 
higher the value of the vegetation index, 
the higher the level of greenness of the 
object being observed, and vice versa. In 
this study, the vegetation index used has 
a different range of values: NDVI = 0.24 
to 0.91, EVI = 0.06 to 0.9, DVI = 0.02 to 
0.54. To ensure the data is suitable for 
use in the next process, a normality test 
is carried out. 

Table 3-1 presents the results of the 
normality test with 40 data inputs 
(Figure 3-1). The amount of data is in 
accordance with the samples collected in 
the field. The results show Dn < KStable, 
therefore these data meet the 
assumptions of parametric statistical 
research. 

 
Table 3-1: The Kolmogorov–smirnov normality 

test results. 

Input 
Statistic 

Mean Dn KStable 

AGB observed 174.6 0.085 0.210 
NDVI 0.715 0.074 0.210 
EVI 0.443 0.043 0.210 
DVI 0.273 0.059 0.210 

 
Figure 3-1. Field condition and measuring 

points 

Based on the Kolmogorov–smirnov 
normality test results, concluded that 
the estimated data were suitable for use 
in statistical analysis. The correlation 
test showed DVI (0.876) has the 
strongest relation with field measured 
AGB, as compared to NDVI (0.823) and 
EVI (0.875). 

After the data is declared feasible to 
use, then a linear regression analysis 
was performed to determine the AGB 
estimation model. Based on the results 
shown in Figure 3-2, the DVI has a 
higher R2 (0.7679) compared to NDVI 
(0.677) and EVI (0.766). This shows that 
the pixel value generated from DVI can 
describe 76.79% of the variation in AGB 
measured in the field. 

The model based on linear regression 
equation with the best R2 is y = 900.47x-
18.234 where y is the AGB in the field 
and x is the DVI value. The three 
vegetation indices tested in this study 
shows a strong relation between the x 
and y variables. The model results are 
then applied to the AGB estimation 
(Figure 3-2), then a validation test is 
carried out so that the best model can be 
continued to the next process. 

Based on Figure 3-3, it is the 
distribution pattern of the estimated 
AGB of each model based on the 
vegetation index (NDVI, EVI, and DVI). It 
can be seen that the distribution pattern 
of AGB in the north of the study site is 
higher than in the south. The same 
pattern was also found by Mahasani et 
al., (2021). NDVI-based AGB has a value 
range of 0 to 285.8 Mg/ha, EVI-based 
AGB has a value range of 0 to 410.52 
Mg/ha, and DVI-based AGB has a value 
range of 0 to 468.38 Mg/ha. 
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3.3 AGB maps accuracy assessment 

Furthermore, a validation test is 
carried out on the model based on the 
vegetation index (NDVI, EVI, and DVI). 
Figure 3-4 shows the pattern of relations 
between model-based AGB estimates 
and AGB field observations. Where EVI-
estimated-AGB and DVI-estimated-AGB 
have a strong relation, because the data 
distribution pattern is closer to the 
dotted line compared to the NDVI-
estimated-AGB data distribution. 

Mean Absolute Error (MAE) is used 
to strengthen the results in Figure 3-4. 
The lower the MAE value, the higher the 
accuracy. The MAE calculation results 
(Table 3-2) show that the NDVI-based 
model has an error value of 35.482 
Mg/ha, the EVI-based model has an 
error value of 25.545 Mg/ha, and the 
DVI-based model has an error value of 
23.525 Mg/ha. DVI produces the lowest 

error value, meaning that DVI-based 
AGB has high accuracy. 

 
Table 3-2: Comparison of the vegetation 

indices used in this research. 

Input r R2 MAE 

NDVI 0.823 0.677 35.482 
EVI 0.875 0.766 25.545 
DVI 0.876 0.7679 23.525 

DVI proved to be effective for the 
detection of the estimated AGB of 
mangrove forests. This result is also 
supported by the research of Wicaksono 
et al., (2016) and Purnamasari et al., 
(2021). DVI is effective because it has a 
simple formula, is consistent at all 
radiometric levels, and is able to improve 
the vegetation aspect. The use of the red 
band is able to absorb chlorophyll well 
and the use of the NIR band has a high 
reflectance.  

 
Figure 3-2: Regression function between field-measured AGC and (a) NDVI, (b) EVI, and (c) DVI 

 
Figure 3-3: Predicted maps of AGB distribution in the study site derived from vegetation indices model, 

(a) NDVI, (b) EVI, and (c) DVI 

 
Figure 3-4: The 1:1 goodness-of-fit plot of field-measured AGB against (a) NDVI-estimated AGB, (b) 

EVI-estimated AGC, and (c) DVI-estimated AGC 
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3.4 Mangrove Biomass Mapping 
After obtaining the DVI as the best 

vegetation index in the estimation of AGB 
of mangrove forests, then the BGB 
estimation is calculated using equation 
2-4. Mangrove BGB is biomass in roots 
(axial and fine roots), rhizomes, and leaf 
litter (Craft, 2013; Fourqurean et al., 
2019). The processing results shown that 
the BGB value was lower than AGB. The 
range of BGB values in this study was 0 
to 79.425 Mg/ha. This is in accordance 
with the results by Hastuti et al., (2017) 
in Jembrana, Bali. The difference in AGB 
and BGB values was determined by 
mangrove species, geographical location, 
canopy density, and ecology factors 
(Sahu et al., 2016). The spatial 
distribution of BGB can be seen in Figure 
3-5. 

 
Figure 3-5: Distribution of below-ground 

biomass (BGB) derived DVI (Eq. 2-4) in the 
study site 

Furthermore, the estimated values 
of AGB and BGB are added together to 
produce an estimate of the total biomass 
at the study site (TAB). The range of TAB 
values in this study was 0 to 547.8 
Mg/ha. The spatial distribution of TAB 
can be seen in Figure 3-6. 

In this study, there is a positive 
relation between DVI-based AGB 
estimation and BGB estimation. These 
results indicate that BGB can be 
estimated using AGB (Meng et al., 2021). 
The use of remote sensing technology is 
highly recommended in obtaining BGB 
information through AGB. 

 

 
Figure 3-6: Distribution of total accumulated 

biomass (TAB) derived DVI (Eq. 2-5) in the 

study site 

 
3.5 Total Carbon Stock and CO2 

Sequestration Mangrove Mapping 
The estimated TAB value that has 

been calculated can then be reduced to 
an estimated total carbon stock (TCS) 
using equation 2-6. 47% of plant 
biomass is carbon (Indonesian National 
Standard (SNI), 2011; Fourqurean et al., 
2019). The range of TAC values in this 
study was 0 to 257.47 Mg/ha. The 
spatial distribution of TCS can be seen in 
Figure 3-7. 

 
Figure 3-7: Distribution of total carbon stock 
(TCS) derived TAB (Eq. 2-6) in the study site 

The spatial distribution pattern of 
the estimated TCS of the Benoa Bay 
mangrove forest is in accordance with 
the results of field observations. High 
TCS (dominated by Rhizophora sp.) was 
found in the dense mangrove canopy.  
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Meanwhile, low TCS values 
(dominated by Sonneratia sp.) were found 
in the sparse mangrove canopy. These 
results are in accordance with the 
research conducted by Wirasatriya et al., 
(2022) with the research location in 
Karimunjaya Islands. These results are 
also reinforced by several studies which 
state that there is a positive relation 
between the canopy and TCS of 
mangrove forests (Jones et al., 2014; 
Benson et al., 2017). 

After getting the TCS value, the last 
step of this research is to derive 
equations 2-7 so as to produce the 
amount of CO2 sequestration (ACS). ACS 
of mangrove forests is the ability of 
mangrove ecosystems to absorb CO2 
(Matthews et al., 2021). The range of ACS 
values for mangrove forests in this study 
was 0 to 944.912 Mg/ha. 

 
Figure 3-8: Distribution of amount of CO2 

sequestration (ACS) derived TCS (Eq. 2-7) in 
the study site 

Plant biomass (mangroves) are 
closely related to the photosynthesis 
process (Tarakanov et al., 2022; Abideen 
et al., 2022). The absorption of CO2 from 
the photosynthesis process produces 
organic compounds, so that the plant 
biomass increases. The higher the tree 
diameter (Imani et al., 2017) and tree 
height (Fu & Wu, 2011), the higher the 
plant's ability to absorb free carbon from 
the air. 

Furthermore, to improve the results 
of this study, models can be developed 
using other vegetation indices, 
combining vegetation indices, and 
improving the level of accuracy. 
Allometric algorithm for estimation of 
CO2 absorption can be developed further. 
So that the level of accuracy in the 

estimation of biomass, carbon, and CO2 
absorption of mangrove forests can 
increase. 

 
4 CONCLUSIONS 

In this study, the classification of 
mangrove objects using the multivariate 
random forest algorithm had good 
results (OA: 0.98, kappa: 0.95, area: 
1134 ha). Overall, the utilization of the 
vegetation index based on Sentinel-2 
satellite imagery has potential in 
estimating mangrove forest biomass. 
Based on the results of the model in this 
study, the DVI vegetation index has good 
accuracy in the estimation of AGB (r: 
0.876, R2: 0.7679, MAE: 23.525) with a 
value range of 0 to 468.38 Mg/ha. 
Furthermore, the DVI-based AGB model 
can be derived using allometric 
equations to produce BGB (0 to 79.425 
Mg/ha), TAB (0 to 547.8 Mg/ha), TCS (0 
to 257.47 Mg/ha), and ACS (0 to 944.912 
Mg /Ha). The use of the DVI-based on 
AGB model is very relevant in estimating 
the carbon stock of mangrove forests, as 
well the model can be used in estimating 
CO2 sequestration of mangrove forests. 
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