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Abstract. Data collection in smallholder sugarcane plantations is still very sensitive to 

the subjectivity of informants and data collectors. In the meantime, the problem with 

data collection on sugarcane plantation companies is a low response rate. This situation 

can reduce the precision of the estimates that are produced. Consequently, the goal of 

this research is to recognize sugarcane fields using the machine learning models on 

Sentinel-2A satellite imagery in Kediri Area that covering Kediri Regency and Kediri 

Municipality, East Java. Along with developing machine learning algorithms, this 

research will evaluate how well LightGBM performs when compared to other algorithms, 

including CART, SVM, Random Forest, and XGBoost. Each model employed 

hyperparameter tuning with random search and stratified 10-fold cross validation to 

avoid overfitting. The process of labelling satellite imagery using images from Google 

Street View, then predictor variables used are NDVI, NDWI, NDBI, EVI, and elevation. 

The most accurate classification model obtained was LightGBM, with a 98% accuracy 

and a cohen’s kappa of 97.7%. The estimated area of sugarcane plantations in the Kediri 

Regency and Kediri Municipality in September 2022 is 18,897.6 ha and 571.87 ha.  

  

Keywords: remote sensing, CART, SVM RBF kernel, SVM polynomial kernel, Random 

Forest, XGBoost, LightGBM   

 

1 INTRODUCTION  

 

 Sugarcane (Saccharum officinarum) 

is a member of the Gramineae family, 

which includes grasses. The sugar and 

monosodium glutamate (MSG) 

industries utilize the water extracted 

from sugarcane stalks as a raw 

ingredient. (Syathori & Verona, 2020). 

Thousands of factory workers and 

sugarcane farmers depend on the 

sugarcane and MSG industries for a 

living. Furthermore, sugar has become a 

necessity for most Indonesians 

(Sulaiman et al., 2018).  

Indonesia's annual sugar 

consumption continues to rise (BPS, 

2022). However, the sugarcane 

plantations area did not rise 

considerably; in fact, it decreased 

because of land conversion. As part of its 

attempts to establish national food 

security, the Indonesian government is 

attempting to attain self-sufficiency in 

sugar production (Sulaiman et al., 

2018).   

Accurate and up to date data on 

sugarcane plantations is required to 

progress sugarcane plantations in 

Indonesia. Statistical Agency (BPS) and 

the Directorate General of Plantations 

are the two primary data sources for 

sugarcane plantations in Indonesia. BPS 

obtained data related to sugarcane 

plantation companies using Computer 

Assisted Web Interviewing (CAWI)-based 

self-enumeration and by interviewing 

companies that had not filled out the 

form. (BPS, 2022).  

Meanwhile, the Directorate General 

of Plantations collects statistics on 

smallholder plantations through field 

officers' estimations. Officers will collect 

data on planting methods, population 

density per hectare, land area (distinct 

from planting area), and other factors. 
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The sources of information included 

planters, farmer groups, village 

officials, and others. Officers will 

estimate the area based on this data in 

accordance with the Guidelines for 

Implementing Plantation Commodity 

Data Management (PDKP) (Kementrian 

Pertanian, 2013).   

However, until recently, data 

gathering on smallholder plantations 

was very sensitive to informant and 

data collector subjectivity (Ruslan & 

Prasetyo, 2021). The guidelines for 

creating predictions that are not up to 

date can provide estimates that are not 

in agreement with the present 

circumstance. Moreover, the problem 

with data gathering on sugarcane 

plantation companies is a low response 

rate. These factors can reduce the 

precision of the estimates that are 

produced.   

Estimation results that are either 

overestimated or underestimated can 

lead to policymaking errors, particularly 

in the case of sugar import regulations. 

When the supply of sugar from local 

farmers is sufficient, excessive imports 

of sugar might cause losses to sugar 

farmers or even go bankrupt. In the 

meanwhile, when the sugar supply is 

insufficient, low imports will force the 

price of sugar and its products to 

decrease uncontrollably.  

Various methods of data gathering 

can be utilized to improve the quality of 

sugarcane plantation data, including 

remote sensing (Ruslan & Prasetyo, 

2021). Numerous research on the 

subject have been conducted, including 

those by Wang et al., (2020), Cevallos et 

al., (2019), Jiang et al., (2019), Mulianga 

et al., (2015), Schultz et al., (2015). 

Previous research indicates that the 

extent of sugarcane plants can be 

accurately recognized using the 

machine learning model applied to 

satellite data. Some machine learning 

methods that have been used previously 

include CART (Verma et al., 2017; Wang 

et al., 2020), SVM (Everingham et al., 

2007; Wang et al., 2019), Random Forest 

(Jiang et al., 2019; Schultz et al., 2015), 

and XGBoost (Jiang et al., 2019).  

The CART, Random Forest, and 

XGBoost methods are tree-based models 

that do not require a lot of preprocessing 

data but perform well in detecting sugar 

cane plantations. (Jiang et al., 2019; 

Schultz et al., 2015; Wang et al., 2020). 

Moreover, the SVM method works 

exceptionally well with high dimensional 

data (Ghaddar et al., 2018; Som-Ard et 

al., 2021). Other research demonstrates 

 that the  XGBoost algorithm 

detects sugarcane plantation areas with 

a similar accuracy to the Random Forest 

method, but at a considerably faster rate 

(Som-Ard et al., 2021). 

Along with the development of 

machine learning algorithms, there are 

now various kinds of machine learning 

algorithms that are claimed to be more 

efficient and provide more accurate 

prediction results. The LightGBM 

algorithm is claimed to be much more 

efficient than XGBoost but still 

preserves the accuracy value (Ke et al., 

2017). Research by McCarty et al. (2020) 

has shown that the LightGBM algorithm 

is more efficient and performs better 

than SVM and Random Forest in 

classifying land use and land cover over 

large geographic areas. The LightGBM 

has provided much better performance 

and efficiency than SVM, Random 

Forest, and KNN in tree species 

classification in Portugal with multi-

temporal Sentinel-2A data (Łoś et al., 

2021). 

However, the use of the LightGBM 

algorithm is still rarely used in 

classifying sugarcane plantations. 

Consequently, the goal of this research 

is to analyze the performance of 

LightGBM compared to CART, SVM, 

Random Forest and XGBoost in 

detecting sugarcane plantations on 

sentinel-2A satellite images. 

Furthermore, this research  will estimate 

the area of sugarcane crops in the Kediri 

region in September 2022 using the best 

model.  

  

2  MATERIALS AND METHODOLOGY  

 

2.1 Study Area  
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The focus of this research is in Kediri 

Area that covering Kediri Regency and 

Kediri Municipality,  East Java Province. 

This is because East Java Province has 

the most sugarcane plantations in 

Indonesia, accounting for approximately 

44.09 percent of Indonesia's total sugar 

production in 2021. Malang Regency 

and Kediri Regency are the two districts 

with the most sugarcane production in 

East Java Province (BPS, 2022). In this 

research, Kediri Regency was selected 

because it has a lower cloud cover 

percentage than Malang Regency. Kediri 

Municipality was also included in the 

study area because of its existence in 

Kediri Regency. 

 

 
                            (a)                                                         (b) 

 
Figure 2-1: (a) Research site, Kediri Area East Java. (b) Sentinel-2A imagery of research site. 

2.2 Data Collection  
The satellite image used is Sentinel-

2A MSI for September 2022 sourced 

from Google Earth Engine (GEE). The 

month of September was selected 

because Google Street View (GSV) 

shooting in the Kediri Area was 

primarily conducted in September 

2022. In addition, the satellite imagery 

is incorporated into the cloud masking 

procedure to eliminate cloud cover. 

 

  

 
Figure 2-2: The process of labelling Sentinel-2A imagery with GSV
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Table 2-1: Number of pixels in sample data. 

Class Class Name 
Sample 

size 

1  Water  458  

2  Bare soil  455  

3  Built up area  465  

4  Open field  450  

5  Sugar cane  481  

6  Forest  495  

  Total  2.804  

 

Using GSV to identify satellite 

imagery. This is owing to the lack of 

formal administrative maps of sugarcane 

fields in Indonesia and the restricted 

scope of direct field surveys. The process 

of labelling satellite imagery using only 

images from GSV was carried out in 

September 2022. The sample polygons 

were categorized into six groups: water 

bodies, bare soil (non-vegetative and 

fallow land), built-up area (roads and 

buildings), open field (non-sugarcane 

and non-forest), sugarcane, and forests. 

Then, points are selected at random from 

the polygon, with the number of points 

for each class listed below.  
 

2.2 Feature Collection  

Sentinel-2A MSI imagery consists of 

13 spectral bands with three different 

spatial resolutions with ground sampling 

distances of 10, 20, and 60 meters 
(Nurmasari & Wijayanto, 2021). The 

spectral band specifications of the MSI 

Sentinel-2A instrument can be seen in 

table 2-2.  

 

Table 2-2: Sentinel-2A MSI instrument spectral band specifications. 

Band Resolution Central 

Wavelength 

Description 

B1 60 m 443 nm Ultra Blue (Coastal and Aerosol) 
B2 10 m 490 nm Blue 
B3 10 m 560 nm Green 
B4 10 m 665 nm Red 
B5 20 m 705 nm Visible and Near Infrared (VNIR) 

B6 20 m 740 nm Visible and Near Infrared (VNIR) 
B7 20 m 783 nm Visible and Near Infrared (VNIR) 
B8 10 m 842 nm Visible and Near Infrared (VNIR) 
B8a 20 m 865 nm Visible and Near Infrared (VNIR) 
B9 60 m 940 nm Short Wave Infrared (SWIR) 
B10 60 m 1375 nm Short Wave Infrared (SWIR) 
B11 20 m 1610 nm Short Wave Infrared (SWIR) 
B12 20 m 2190 nm Short Wave Infrared (SWIR) 

In general, composite indices are 

derived from these spectral bands; each 

composite index has a specific 

application. The Normalized Difference 

Vegetation Index (NDVI) has been utilized 

extensively to detect sugarcane fields 

(Cevallos et al., 2019; Jiang et al., 2019; 

Mulianga et al., 2015; Schultz et al., 

2015). In addition, based on research by 

Mulianga et al., (2015) Normalized 

Difference Water Index (NDWI) gives 

better classification results than using 

NDVI. Another research by Nonato and 

Oliveira (2013) demonstrated that a 

combination of NDVI and EVI could 

accurately categorize sugarcane. 

Additionally, the Normalized Difference 

Built-Up Index (NDBI) composite index is 

utilized to differentiate between different 

bare soil classes and built-up area 

(Marsuhandi. et al., 2020). The 

generalised formula for computing each 

composite index is as follows:  

 
𝑁𝐷𝑉𝐼 =

𝑁𝐼𝑅 − 𝑅𝐸𝐷

𝑁𝐼𝑅 + 𝑅𝐸𝐷
 (2-1) 

 

 
𝑁𝐷𝐵𝐼 =

𝑆𝑊𝐼𝑅 − 𝑁𝐼𝑅

𝑆𝑊𝐼𝑅 + 𝑁𝐼𝑅
 (2-2) 

 

 
𝑁𝐷𝑊𝐼 =

𝐺𝑅𝐸𝐸𝑁 − 𝑁𝐼𝑅

𝐺𝑅𝐸𝐸𝑁 + 𝑁𝐼𝑅
 (2-3) 
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 𝐸𝑉𝐼
= 2.5

×
𝑁𝐼𝑅 − 𝑅𝐸𝐷

𝑁𝐼𝑅 + 6 × 𝑅𝐸𝐷 − 7.5 × 𝐵𝐿𝑈𝐸 + 1
 

(2-4) 

 

In addition to composite indices, 

maps of regional elevations are also used 

to improve accuracy.  This is because 

sugar cane can only grow below an 

altitude of 1,400 meters above the sea 

level, and because growth tends to be 

slow, sugar cane is typically not planted 

at an altitude of 1,200 meters above sea 

level. Below 500 meters above sea level is 

the best land elevation. (Indrawanto et 

al., 2010). The elevation map used is 

derived from National Aeronautics and 

Space Administration (NASA) Shuttle 

Radar Topography Mission (SRTM) 

Digital Elevation (DEM) 30 m. 

 

2.3 Methods  

 

The steps of this research are divided 

into three parts: preprocessing, 

processing, and estimation. The 

preprocessing step comprises of filtering 

satellite images with a cloud percentage 

of less than 20% and cloud masking of 

satellite imaging data; this stage is 

executed using GEE.  At the processing 

stage, the satellite image data and the 

labels that have been made are extracted 

and splitting data is carried out with the 

proportion of training data being 80% 

and 20% testing data. Stratified random 

sampling is used to splitting data so that 

the proportion of each class in the 

resulting dataset is not significantly 

altered (Kuhn & Silge, 2022). The utilized 

machine learning models are 

Classification and Regression Trees 

(CART), Support Vector Machine (SVM), 

Random Forest (RF), Extreme Gradient 

Boosting (XGBoost), and Light Gradient-

Boosting Machine (LightGBM).  

 

2.3.1 CART (Classification and 

Regression Tree) 

 

CART is a development of the previous 

decision tree algorithm, namely ID3 and 

C4.5, where the CART algorithm is able to 

handle classification and regression 

cases. CART is a simple method and does 

not require a long time in determining the 

best parameters (Tariq et.al. 2023). 

The CART algorithm uses the highest 

gini gain value as a criterion in splitting 

data. Suppose a dataset 𝑆  with size 

𝑁 × (𝑗 + 1) contain response variable and 

predictor variables, where 𝑗 = 1, … , 𝑝 

denotes the number of predictor 

variables. Then the data is split into 𝑆𝐿 

when  𝑋𝑗 ≤ 𝑥𝑗(𝑖)  and the remaining 

observations to 𝑆𝑅 .  Then the formula for 

calculating gini gain can be seen in 

equation 2-5: 

𝐺𝑖𝑛𝑖 𝑔𝑎𝑖𝑛 = 𝑔𝑖𝑛𝑖(𝑦) −
𝑁𝐿

𝑁
𝑔𝑖𝑛𝑖(𝑦𝐿) −

𝑁𝑅

𝑁
𝑔𝑖𝑛𝑖(𝑦𝑅) (2-5) 

 

Where 𝑔𝑖𝑛𝑖(𝑦𝐿)  is the gini impurity/gini 

index value of the y variable in 𝑆𝐿, while 

𝑔𝑖𝑛𝑖(𝑦) is the gini impurity value of the y 

variable in 𝑆 . In the classification case, 

the metric used in gini gain is the gini 

impurity/gini index. While in regression, 

the metric used is variance (Strobl et al., 

2007). The formula for calculating gini 

impurity/gini index and variance can be 

seen in equations 2-6 and 2-7: 

 
𝐺𝑖𝑛𝑖 𝐼𝑚𝑝𝑢𝑟𝑖𝑡𝑦 = 1 − ∑ 𝑝1

2

𝐶

𝑖=1

 (2-6) 

 

 
𝑉𝑎𝑟𝑖𝑎𝑛𝑐𝑒 =

∑ (𝑦𝑖 − �̅�)2
𝑛
𝑖=1

𝑛 − 1
 (2-7) 

 

Where 𝐶 is the number of class labels. The 

process of finding the highest gini gain 

value will be done for all predictor 

variables and each class label. 

 

2.3.2 Random Forest 

 

Random forest is a bagging method 

(Bootstrap Aggregating) in several 

decision tree algorithms. The result of the 

most votes will be the prediction output 

in the classification case, while in the 

regression case, using the average value 

of each decision tree prediction. Not all 

predictor variables nor all observations 

will be included in every decision tree 

algorithm. However, it is a sample of 

observations and a sample of predictor 

variables (Tariq et.al. 2023). By doing 

this, the risk of multicollinearity will 

decrease because the trees naturally do 
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not correlate through this process. 

(McCarty et al. 2020). The Random Forest 

algorithm has the advantage that it does 

not require a lot of data preprocessing 

and provides high accuracy in the 

detection of sugarcane plantations (Jiang 

et al., 2019; Schultz et al., 2015). 

 

2.3.3 SVM (Support Vector Machine) 

 

SVM is a classification method that 

creates nonlinear constraints by creating 

linear constraints within a larger, 

modified feature space. The SVM 

algorithm has several kernel functions, 

among which are linear, polynomial, 

radial basis function (RBF) and sigmoid. 

In our research, we use a radial basis 

function (RBF) and polynomial kernel due 

to some of the composite indices not 

being linearly separable (McCarty et al. 

2020). The SVM algorithm usually 

normalizes the predictor variable before it 

is entered into the model; this is done to 

get optimal results. (Kuhn & Silge, 2022). 

Please see Cortes & Vapnik (1995) for a 

more detailed mathematical explanation 

of this method. 

 

2.3.4 XGBoost 

 

The XGBoost algorithm introduced by 

Chen and Guestrin, is a classification 

algorithm that uses the concept of 

boosting, which is an iterative process to 

strengthen weak classifiers so that the 

longer the classifier becomes the higher 

the performance. The XGBoost algorithm 

uses a decision tree to calculate the 

residual value, which is the difference 

between the output of the base model 

classifier and the target value. At the 

beginning, this residual value will be 

large because the classifier has not 

learned the pattern of the target. But as 

the iteration increases, the XGBoost 

algorithm will add a decision tree so that 

the residual value gets smaller. Other 

research demonstrates that the XGBoost 

algorithm detects sugarcane plantation 

areas with a similar accuracy to the 

Random Forest method, but at a 

considerably faster rate. (Som-Ard et al., 

2021). This is because the XGBoost 

algorithm supports the use of GPU 

(Graphics Processing Unit). For more 

details of XGBoost algorithm, please refer 

to Chen & Guestrin (2016). 

 

2.3.5 LightGBM 

 

LightGBM (Light Gradient Boosting 

Machine) is a combination of the Gradient 

Boosting Decision Tree (GBDT) algorithm 

with the Exclusive Feature Bundling 

(EFB) and Gradient-Based One Side 

Sampling (GOSS) algorithms to handle 

huge data with preserving accuracy (Ke et 

al., 2017). The GOSS algorithm aims to 

eliminate data with small gradients 

because data with large gradients has a 

more important role in decision-making. 

While the EFB algorithm is a technique 

that aims to reduce the number of 

features by grouping exclusive features. 

However, because determining the 

combination of features in an optimal way 

is quite difficult, the histogram algorithm 

on LightGBM is used to make its 

implementation. LightGBM's 

mathematical explanation can be seen in 

more detail in Ke et al., (2017). 

 

2.3.6 Accuracy and Cohen’s Kappa 

Assessment 

 

The SVM algorithm requires 

normalization of predictor variables to get 

optimal results (Kuhn & Silge, 2022). In 

this study, the predictor variables will be 

normalized first for the SVM model. Each 

model's parameters are optimized by 

hyper-parameters tuning and random 

search. In addition, stratified 10-fold 

cross validation is employed to prevent 

overfitting. stratified 10-fold cross 

validation was selected so that the 

distribution of each class in each fold 

would be about the same as the 

distribution in the initial dataset. (Prusty 

et al, 2022, Pramana et al., 2018). In our 

research, we used an R library called 

tidymodels to perform the entire workflow 

from data preprocessing to model 

evaluation. The final parameters used for 

all models in this study are as follows: 
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Table 2-3: Model parameters. 

Model Parameters 

LightGB

M 

1. Maximum depth of trees  

[1, 15] 

2. Minimal node size [2, 40] 

3. Number of trees [1, 2000] 

4. Minimum loss reduction 

(transformed scale) 

[10−100, inf] 

5. Learning rate [10−100, inf] 

6. Iterations before stopping 

[3, 20] 

 

XGBoost 1. Maximum depth of trees  

[1, 15] 

2. Minimal node size [2, 40] 

3. Number of trees [1, 2000] 

4. Minimum loss reduction 

(transformed scale) 

[10−100, inf] 

5. Learning rate [10−100, inf] 

6. Iterations before stopping 

[3, 20] 

 

Random 

Forest 

1. Number of trees [1, 2000] 

2. Minimal node size [2, 40] 

 

CART 1. Maximum depth of trees [1, 

15] 

2. Minimal node size [2, 40] 

 

SVM 

RBF 

Kernel 

1. Cost (transformed scale) [-

10, 5] 

2. Radial basis function sigma  

(transformed scale) [-10, 0] 

3. Insensitivity margin [0, 0.2] 

 

SVM 

Polynomi

al Kernel 

1. Cost (transformed scale) [-

10, 5] 

2. Degree [1, 3] 

3. Scale factor (transformed 

scale)  

[-10, -1] 

 

The best model is selected using 

accuracy and cohen's kappa values. 

Because the number of samples for each 

class is somewhat similar, the accuracy 

metric is utilized (Grandini et al., 2020). 

In contrast, cohen's kappa was chosen 

because it provides a more accurate 

evaluation of model performance by 

taking the number of observations 

between classes into account (Landis & 

Koch, 1977). The computation for the 

accuracy and cohen’s kappa was as 

follows:  

 

 
𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =

𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
 

(2-

5) 
 

 
𝐶𝑜ℎ𝑒𝑛′𝑠 𝑘𝑎𝑝𝑝𝑎 =

Pr(𝑎) + Pr (𝑒)

1 − Pr (𝑒)
 

(2-

6) 
 

Where:  

TP : true positive  

TN  : true negative  

FP  : false positive  

FN  : false negative  

Pr(a)  : probability of the correctly 

classified 

Pr(e)  : probability of expectation between 

classes 

 

 
 

Figure 2-3 depicts the general progression of this 

research methodology:   

 

During 2021 and September 2022, 

the area of sugar cane plants in the Kediri 

Area will be estimated using the best 

model obtained. The predicted area of 
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sugarcane planting in 2021 will be 

compared to official statistic data from 

BPS-published. Using the following 

formula, the approximate area of 

sugarcane plantations is determined:  

 𝐴 = 𝑃𝑠 × 𝐿 (2-7) 

where:  

A : Sugarcane plantation area   

Ps: Percentage of pixels of sugarcane 

plantations  

L : Regency/Municipality area   

  

 

3   RESULTS AND DISCUSSION  

3.1 Data Exploration  

 Figure 3-1 boxplots shows that using 

the NDVI, NDWI and EVI composite 

indices, the distinctions between forest 

classes, open field, and sugarcane 

plantations can be effectively captured. In 

contrast, the NDVI, NDWI, and EVI do not 

capture the distinction between land and 

built-up land as clearly as the NDBI does. 

In addition, the variation in the range of 

elevation values between sugarcane 

plantations, forest, and open field terrain 

can be utilized to differentiate the three 

classifications.   
 

3.2 Classification Result  

 

Hyperparameter tuning has been 

performed as many as 25 combinations of 

parameters for each model. Furthermore, 

each model has been stratified 10-fold 

cross validation to obtain true values for 

accuracy and cohen's kappa. Based on 

the outcomes of hyperparameter tuning 

with random search, the optimal 

parameters for every model can be seen in 

Table 3-1.  

 
  

 

 

 
Figure 3-1: Distribution of composite index 

values per   class 

 

The parameter optimized LightGBM 

model has more accuracy and cohen's 

kappa value than the other models, as 

shown in Figure 3-2. Furthermore, the 

LightGBM model also has a small 

confident interval for accuracy and 

cohen’s kappa. This indicates that the 

performance differences across the 

LightGBM variants are not significant. 

The same condition also occurs in the 
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Random Forest, SVM, and CART 

algorithms. 

 
Table 3-1: Optimal parameters for each model. 

Model Parameters 

LightGB

M 

Maximum depth of trees: 13 

Minimal node size: 4 

Number of trees: 1423 

Minimum loss reduction: 

2.04 × 10−9 

Learning rate: 3.7 × 10−3 

Iterations before stopping: 6 

 

XGBoost Maximum depth of trees: 12 

Minimal node size: 8 

Number of trees: 760 

Minimum loss reduction: 

5.53 × 10−5 

Learning rate: 0.151 

Iterations before stopping: 5 

 

Random 

Forest 

Number of trees: 693 

Minimal node size: 3 

Maximum depth of trees: 

unlimited depth 

 

CART Maximum depth of trees: 11 

Minimal node size: 4 

 

SVM 

RBF 

Kernel 

Cost: 20.6 

Radial basis function sigma: 

0.329 

Insensitivity margin: 0.196 

 

SVM 

Polynomi

al Kernel 

Cost: 0.124 

Degree: 2 

Scale factor: 0.0438 

 

 

The LightGBM model achieves a 

maximum accuracy of 97.0%, while 

kappa is 96.3%. Random Forest, with a 

96.2% accuracy and 95.5% kappa, was 

the second-best model obtained. 

However, the Random Forest model 

produces a smaller standard error than 

other models. In addition, it can be 

observed that the tree-based model tends 

to generate superior results compared to 

other models. Tables 3-2 and 3-3 provide 

a comparison of each model's precision, 

Cohen's kappa, and standard error 

values. 

 

 

 
Figure 3-2: Estimated accuracy, cohen’s kappa 

and approximate confidence 

intervals for the best model. 

 
Table 3-2: Result of accuracy. 

Model 
Accura

cy 

Std 

error 
LightGBM  0.970  0.00556  

Random Forest  0.962  0.00445  

XGBoost  0.959  0.00549  

SVM RBF kernel  0.945  0.00451  

CART  0.938  0.00525  

SVM polynomial 

kernel  

0.843  0.00990  

 
Table 3-3: Result of cohen’s kappa 

Model 
Cohen’s 

kappa 

Std 

error 

LightGBM  0.963  0.00668  

Random Forest  0.955  0.0053

4  

XGBoost  0.951  0.00659  

SVM RBF 

kernel  

0.934  0.00541  

CART  0.926  0.00630  

SVM 

polynomial 

kernel  

0.811  0.01190  

 

As the final measure of a model's 

success, each model will be evaluated 

using test data in the next phase. Table 

3-4 demonstrates that the LightGBM 

model is still the best model with the 

highest accuracy and kappa, with an 

accuracy of 98% and a Cohen’s kappa of 

97.7%. There is no overfitting or 
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underfitting because the accuracy and 

Cohen's kappa values between the 

training data and the testing data are not 

significantly different, showing that the 

final model is adequate.  

 
Table 3-4: Model performance comparison in the 

test data.   

Model Accuracy 
Cohen’s 

Kappa 

LightGBM  0.980 0.977 

Random  

Forest  

0.970 0.964 

XGBoost  0.968 0.962 

SVM RBF  

kernel  

0.952 0.942 

CART  0.940 0.927 

SVM 

polynomial 

kernel  

0.868 0.842 

 

The next phase is that each model will 

be used to classify land cover in the Kediri 

Area. The classification results for each 

model can be seen in Figure 3-3. Based 

on Figure 3-3 all models can classify 

forest classes very well. However, SVM 

polynomial kernel models tend to classify 

bare soil and open field classes over other 

classes. This is likely because the best 

SVM polynomial models are obtained 

only with degree 2 (see Table 3-1). Some 

classes may not be quadratically 

separated from each other, so the SVM 

polynomial kernel models cannot be 

classified properly. 

SVM RBF kernel and CART models 

tend to classify open field classes into 

built-up area classes. However, 

LightGBM and Random Forest models are 

robust models (Zheng et al., 2023). This 

can be seen in the results of the 

LightGBM and Random Forest 

classifications which can classify the 

Dhoho airport development land into the 

bare soil class well when compared to 

other models (see Figures 3-3). A tree-

based model is robust because each 

decision tree will be trained with a 

different random subset of data. Then the 

voting results of all trees will be used as 

final predictions. The next stage is to 

validate the classification results of the 

best model (LightGBM). Validation of 

classification results has been carried out 

in areas that have many sugarcane 

plantations. Figure 3-4 shows the results 

of classification in a particular area. 

Areas 1, 2, and 3 are areas in Purwoasri 

sub-district that contain several 

sugarcane plantations, the difference 

between sugarcane plantations, open 

fields (rice fields, corn fields, etc.), trees 

and built-up area can be clearly captured 

by the LightGBM model.   

 

3.3 Estimated Area of Sugar Cane 

Plantation  

 

Data from official statistics on 

sugarcane plantation area is only 

available until 2021, Consequently, the 

estimated area of sugarcane plantations 

will be compared using the best model 

along with official statistic data sourced 

from the BPS and the Directorate General 

of Plantation. The comparison of the 

results of the estimated area of sugarcane 

plantations can be seen in Table 3-5 

below. 

 

Table 3-5: Comparison of the estimated area of 

sugarcane plantations. 

 LightGBM 
Official 

Statistic 
Difference 

Kediri 

Municipality  

     792.50   1,469       682.77  

Kediri 

Regency  

23,774    28,000  4,115  

Total    

24,671.23  

29,469     4.797,77  

 

According to the obtained results, the 

area of sugarcane plantations for the 

Kediri Regency and Kediri Municipality in 

2021 is 23,885 Ha and 786.23 Ha, but the 

area of sugarcane plantations according 

to Official Statistic data is 28,000 Ha and 

1,469 Ha. There is a total disparity of 

4,797.77 hectares; this is likely 

attributable to the gathering of 

smallholder plantation data, which is 

susceptible to overestimate because it 

relies on estimates from informants and 

field officers (Ruslan & Prasetyo, 2021). 
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Furthermore, the estimated area of 

sugarcane plantations for September 

2022 is also carried out. In September 

2022, it is anticipated that the area of 

sugarcane plantations in the Kediri 

Regency and Kediri Municipality will be 

18,897.6 ha and 571.87 ha, respectively. 

However, estimates from remote sensing 

tend to be underestimated when many 

areas are covered by clouds. 

 

 
Figure 3-3: Classification Results for all six algorithms (LightGBM, Random Forest, XGBoost, SVM 

RBF Kernel, SVM Polynomial Kernel, and CART).  
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Figure 3-4: Classification result using LightGBM in specific area.  

  

 

4   CONCLUSIONS  

Sugarcane plantations in the Kediri 

Area can be identified well using the 

composite index values of NDVI, NDWI, 

NDBI, EVI, and elevation. The findings of 

hyper-parameter tuning with random 

search and stratified 10-fold cross 

validation indicate that LightGBM is the 

best model with accuracy and kappa 

values of 98.0% and 97.7%. Using the 

LightGBM model, the estimated area of 

sugarcane plantations in the Kediri 

Regency and Kediri Municipality in 2021 

is 23,885 Ha and 786.23 Ha, there is a 

total difference of 4,797.77 ha; this is 

likely owing to the subjective nature of 

informants' and data collectors' 

estimates in the collection of smallholder 

plantation data, which makes it prone to 

overestimate. While 18,897.6 Ha and 

571.87 Ha, respectively, are the findings 

of the estimation for the Kediri Area in 

September 2022.  
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