ALGORITMA DUA DIMENSI UNTUK ESTIMASI MUATAN PADATAN TERSUSPENSI MENGGUNAKAN DATA SATELIT LANDSAT-8, STUDI KASUS: TELUK LAMPUNG

Muchlisin Arief, Syifa Wismayati Adawiah, Maryani Hartuti, Ety Parwati

Abstract

Remote sensing technique is a powerful tool for monitoring the coastal zone. Optical sensors can be used to measure water quality parameters Total Suspended Matter (MPT). In order to be able to extract information MPT, the satellite data need to be validated with in situ measurements that make the relationship between the reflectance band with concentration MPT measurement results. In this model, do the correlation between the measurement results with the reflectance values band 3 and band 4. then obtained a linear equation, then calculated using the argument of a ratio of 60:75 to each of the correlation coefficient, the obtained linear equation two Dimension T (X3, X4) = 2313.77 X3 + 4741.11 X4 + 314.95. Based on the concentration MPT of dated June 3, 2015 was lower than in the west to the east. this is because the east is already contaminated with the plant, effluent solids by humans, while the west for still many floating net fish, and mangrove. Based on the results of measurement and calculation results , is still far from perfect (accuracy 60%), one factor is the value thresholding, when determining the boundary between: clouds, sea, and land. Generally indicates that the model is still in need for repair.

 

Abstrak 

Penginderaan jauh adalah alat yang ampuh untuk memantau zona pesisir. Sensor optik dapat digunakan untuk mengukur parameter kualitas air Total Suspended Solid/Muatan Padatan Tersuspensi (MPT). Agar supaya dapat mengekstraksi informasi MPT, maka, data satelit perlu divalidasi dengan pengukuran in situ yaitu membuat hubungan antara reflektansi band dengan konsentrasi MPT hasil pengukuran. Pada model ini, dilakukan korelasi antara hasil pengukuran dengan nilai reflektansi band3 dan band4, maka diperoleh persamaan linier, kemudian dihitung dengan menggunakan dalil perbandingan 60 : 75, untuk masing-masing koefisien korelasinya, maka diperoleh persamaan linier dua dimensi T(X3,X4) = 2313.77 X3 + 4741,11 X4 + 314.95.  Berdasarkan konsentrasi MPT  pada 3 Juni 2015 di sebelah baratlebih rendah dibandingkan sebelah timur. Hal ini dikarenakan sebelah timur sudah terkontaminasi dengan pabrik, buangan benda padat oleh manusia, sedangkan sebelah barat karena masih banyak keramba jaring apung ikan dan mangrove. Berdasarkan hasilnya antara pengukuran dan hasil perhitungan, masih jauh dari sempuna (ketelitiannya 60 %), salah satu faktornya adalah dalam menentukan nilai thresholding, pada saat  menentukan batas antara: awan, laut dan darat. Secara umum menunjukkan bahwa model yang masih membutuhkan perbaikan.

Keywords

Landsat-8; Ekstraksi; Reflektansi; Padatan tersuspensi total; Dua dimensi; Teluk Lampung; Extraction; Reflectances; Total suspended matter; Two dimensional; Lampung Bay

Full Text:

PDF

References

Acker J., 2006. Toward a working (and workable) definition of Total Suspended Matter, Total Suspended Matters, 1 (3), 1-2.

Aldabash D.I.M., Şanlı B.F., 2016. Analysis of Multi Temporal Satellite Imagery for Total Suspended Sediments in a Wave-Active Coastal Area-Gaza Strip Coastal Water, Palestine, International Journal of Environment and Geoinformatics, Vol. 3 No.1.

Arief, M., 2012. Pemetaan Muatan Padatan Tersuspensi Menggunakan Data Satelit Landsat, Study Kasus: Teluk Semangka, Jurnal Penginderaan jauh dan Pengolahan Citra Digital ISSN- 1412-8098, Akreditasi : Nomor: 429/Akred-LIPI/04/2012, Vol. 9, No.1.

Arief, M., Lestari L.W., 2006. Analisis Kesesuaian Perairan Tambak di Kabupaten Demak Ditinjau dari Nilai Klorofil-A, Suhu Permulaan Periran dan Muatan Padatan Tersuspensi Meng-gunakan Data Citra Satelit Landsat 7+, Jurnal Penginderaan Jauh, Vol 3, Juni, 108-118.

Binding, C.E.; Bowers, D.G.; Mitchelson-Jacob, E.G., 2005. Estimating Suspended Sediment Concentrations from Ocean Colour Measurements in Moderately Turbid Waters; the Impact of Variable Particle Scattering Properties, Remote Sensing Env.2005, 94(3), 373-383.

Dahuri, R., 2006. Akar Permasalahan Pencemaran Teluk Jakarta dan Strategi Penanggulangannya, LSM-B2M dan PPLH-IPB, Jakarta, 31 Maret 2005.

Dekker, A.G., 1997. Operational Tools for Remote Sensing of Water Quality: a Prototype Tool Kit, Vrije Universiteit Amsterdam, Institute for Environmental Studies, BCRS Report 96-18.

Dekker, A.G., Vos, R.J., and Peters, S.W.M., 2002. Analytical Algorithms for Lake Water Estimation for Retrospective Analyses of TM and SPOT Sensor Data, Int. J. of Remote Sensing, 23, 15-35.

Deutsch E., Alameddine I., El-Fadel M., 2014. Developing Landsat Based Algorithms to Augment in Situ Monitoring of Freshwater Lakes and Reservoirs, 11th International Conference on Hydroinformatics, New York City, USA.

Dihkan, M.; Karsli, F.; Guneroglu, A., 2011. Mapping Total Suspended Matter Concentrations in the Black Sea using Landsat TM Multispectral Satellite Imagery, Fresenius Environ. Bull., 20, 262–269.

Doxaran, D.; Froidefond, J.M.; Lavender, S.; Castaing, P., 2002. Spectral Signature of Highly Turbid Waters: Application with SPOT Data to Quantify Suspended Particulate Matter Concentrations. Remote Sensing Env., 81 (1), 149-161.

Fan F., Qiu M., Ma Y., Fan W., 2012. Monitoring and Analyzing Water Pollution of the Pearl River Inguangzhou Section by using Remote Sensing Images and Fieldacquisition Data, Advances in information Sciences and Service Sciences (AISS)Vol.4, N0.8, May 2012, doi: 10.4156/AISS.vol4. issue 8.9.

Hellweger, F. L., W. Miller, and K. S. Oshodi, 2006. Mapping Turbidity in the Charles River, Boston using a High Resolution Satellite, Environ, Monit. Assess., 132, 311–320, doi:10.1007/s10661-006-9535-8.

Islam, M. R., Y. Yamaguchi, and K. Ogawa, 2001. Suspended Sediment in the Ganges and Brahmaputra Rivers in Bangladesh: Observation from Tmand AVHRR Data, Hydrol. Processes, 15, 493– 509, doi:10.1002/hyp.165.

Lailia N., Arafaha F., Jaelania L.M., Subehie L., Pamungkas A., Koenhardonoc E.S., Sulisetyonod A., 2015. Development of Water Quality Parameter Retrieval Algorithms for Estimating Total Suspended Solids and Chlorophyll-a Concentration using Landsat-8 Imagery at Poteran Island Water ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume II-2/W2, Joint International Geoinformation, Kuala Lumpur, Malaysia.

Mao Z. Chen J., Pan D., Tao B., Zhu Q., 2012. A Regional Remote Sensing Algorithm Fo Total Suspended Matter in the East China Sea, ELSEVIER, Remote Sensing of Enviroment, 124, 819-831.

Michael, P., 1995. Metode Ekologi untuk Penyelidikan dan Laboraturium, Gadjah Mada University Press. Yogyakarta.

Miller, R. L., and B. A. McKee, 2004. Using MODIS Terra 250 M Imagery to Map Concentrations of Total Suspended Matter in Coastal Waters, Remote Sens, Environ, 93, 259–266, doi: 10. 1016/ j.rse.2004.07.012.

Min J.E., Ryu J.H., Lee S. & Son S., 2012. Monitoring of Suspended Sediment Variation using Landsat Andmodis in the Saemangeum Coastal Area of Korea, Marine Pollution Bulletin 64: 382–390.

Ouillon S., Douillet P., Petrenko A., Neveux J., Dupouy C., Froidefond J-M., Andréfouët S. and Muñoz-Caravaca A., 2008. Optical Algorithms at Satellite Wavelengths for Total Suspended Matter in Tropical Coastal Waters, Sensors, Vol.8, 4165-4185; DOI: 10.3390/s8074165.

Ritchie, J.C., M.C. Charles and F.R. Schiebe, 1990. The Relation-Ship of MSS and TM Digital Data with Suspended Sediments, Chlorophyll, and Temperature in Moon Lake, Mississippi, Remote Sens. Environ, 33:137-148.

Shi, W., dan Wang M., 2009. Satellite Observations of Flood-Driven Mississippi River Plume in the Spring of 2008, Geophys. Res. Lett., 36, L07607, doi: 10.1029/2009GL037210.

Song K., Li L., Wang Z., Liu D., Zhang B, Xu J., Du J., Li L., Li S., 2012. Retrieval of Total Suspended Matter and Chlorophyll-A Concentration from Remote-Sensing Data for Drinking Water Resources, Environmental Monitoring and Assessment, Mrch, Vol. 184, issue 3, 1449 -1470.

Tang, D. L., Ni, I. -H., Muller-Karger, F. E., & Liu, Z. J., 1998. Analysis of Annual and Spatial Patterns of CZCS-Derived Pigment Concentration on the Continental Shelf of China, Continental Shelf Research, 18, 1493–1515.

Tassan, S., 1997. A Numerical Model for the Detection of Sediment Concentration in Stratified River Plumes using Thematic Mapper Data, Int. J. Remote Sens., 18(12), 2699–2705.

Wang, Y.J.; Yan, F.; Zhang, P.Q.; Dong, W.J., 2007. Experimental Research on Quantitative Inversion Model of Suspended Sediment Concentration using Remote Sensing Technology, Chinese geographical science, 17 (3), 243-249.

Wozniak, S.B.; dan Stramski, D., 2004. Modeling the Optical Properties of Mineral Particles Suspended in Seawater and their Influence on Ocean Reflectance and Chlorophyll Estimation from Remote Sensing Algorithms, Applied Optics, 43 (17), 3489-3503.

Zhang, Y.Z.; Pulliainen, J.T.; Koponen, S.S.; Hallikainen, M.T., 2003. Water Quality Retrievals from Combined Landsat TM Data and ERS-2 SAR Data, in the Gulf of Finland, IEEE Trans. Geosci. Remote Sens. 2003, 41 (3), 622-629.

Zheng Z., Li Y., Guo Y., Xu Y.,Liu G. and Du C., 2015. Landsat-Based Long-Term Monitoring of Total Suspended Matter Concentration Pattern Change in the Wet Season for Dongting Lake, China, Remote Sensing, 7, 13975- 13999. doi:10.3390/rs710139.

Refbacks

  • There are currently no refbacks.