PENGARUH ASIMILASI DATA PENGINDERAAN JAUH (RADAR DAN SATELIT) PADA PREDIKSI CUACA NUMERIK UNTUK ESTIMASI CURAH HUJAN (IMPACT OF REMOTE SENSING DATA ASSIMILATION (RADAR AND SATELLITE) ON NUMERICAL WEATHER PREDICTION FOR RAINFALL ESTIMATION)
Abstract
One of the main problems in numerical weather modeling was the inaccuracy of initial condition data (initial conditions). This study reinforced the influence of assimilation of remote sensing observation data on initial conditions for predictive numerical rainfall in BMKG radar area Tangerang (Province of Banten and DKI Jakarta) on January 24, 2016. The procedure applied to rainfall forecast was the Weather Research and Forecasting model (WRF) with a down-to-down multi-nesting technique from Global Forecast System (GFS) output, the model was assimilated to radar and satellite image observation data using WRF Data Assimilation (WRFDA) 3DVAR system. Data was used as preliminary data from surface observation data, EEC C-Band radar data, AMSU-A satellite sensor data and MHS sensors. The analysis was done qualitatively by looking at the measurement scale. Observation data was used to know rainfall data. The results of the study showed that producing rainfall predictions with different assimilation of data produced different predictions. In general, there were improvements in the rainfall predictions with assimilation of satellite data was showing the best results.
Â
AbstrakÂ
Salah satu masalah utama pada pemodelan cuaca numerik adalah ketidak-akuratan data kondisi awal (initial condition). Penelitian ini menguji pengaruh asimilasi data observasi penginderaan jauh pada kondisi awal untuk prediksi numerik curah hujan di wilayah cakupan radar cuaca BMKG Tangerang (Provinsi Banten dan DKI Jakarta) pada 24 Januari 2016. Prosedur yang diterapkan pada prakiraan curah hujan adalah model Weather Research and Forecasting (WRF) dengan teknik multi-nesting yang di-downscale dari keluaran Global Forecast System (GFS), model ini diasimilasikan dengan data hasil observasi citra radar dan satelit menggunakan WRF Data Assimilation (WRFDA) sistem 3DVAR. Data yang digunakan sebagai kondisi awal berasal dari data observasi permukaan, data C-Band radar EEC, data satelit sensor AMSU-A dan sensor MHS. Analisis dilakukan secara kualitatif dengan melihat nilai prediksi spasial distribusi hujan terhadap data observasi GSMaP serta metode bias curah hujan antara model dan observasi digunakan untuk mengevaluasi pengaruh data asimilasi untuk prediksi curah hujan. Hasil penelitian yang diperoleh menunjukkan prediksi curah hujan dengan asimilasi data yang berbeda menghasilkan prediksi yang juga berbeda. Secara umum, asimilasi data penginderaan jauh memberikan perbaikan hasil prediksi estimasi curah hujan di mana asimilasi menggunakan data satelit menunjukan hasil yang paling baik.
Keywords
Full Text:
PDFReferences
BMKG, 2010. Prosedur Standar Operasional Pelaksanaan Peringatan Dini, Pelaporan & Diseminasi Informasi Cuaca Ekstrim Badan Meteorologi, Kimatologi, dan Geofisika. Cited in http:// hukum. bmkg.go.id/ vifiles/Prosedur %20 Standar%20Operasional%20Pelaksanaan%20Peringatan%20Dini,Pelaporan,&%20Diseminasi%20Informasi%20Cuaca%20Ekstrim.pdf [20 Februari 2017].
Dash, S. K., Sahu, D.K., Sahu, S.C., 2013. Impact of AWS Observation in WRF-DVAR Data Assimilation System: a Case Study On Abnormal Warming Condition in Odisha. Nethazard. 65, 767-798.
Goodrum G., Kidwell K. B., Winston W., 1999. NOAA KLM user's guide (US: US Department of Commerce, National Oceanic and Atmospheric Administration, Satellite Services Branch). Cited in https://www1.ncdc.noaa.gov/ pub/ data/satellite/publications/podguides/N-15%20thru%20N-19/pdf/ 0.0%20 NOAA%20KLM%20Users%20Guide.pdf [20 Februari 2017].
Gustari, I., 2014. Perbaikan Prediksi Cuaca Numerik Kejadian Hujan Sangat Lebat Terkait dengan Sistem Awan di Jabodetabek Menggunakan Asimilasi Data Radar C-Band. Disertasi Institut Teknologi Bandung. Bandung.
Handoyo M. F., 2015. Analisa Dinamika Atmosfer Saat Kejadian Hujan Lebat Menggunakan Simulasi Model WRF-ARW (Studi Kasus Bengkulu Tanggal 27 Agustus 2014). Skripsi Diploma IV Sekolah Tinggi Meteorologi Klimatologi dan Geofisika. Jakarta.
Hou, T., Kong, F., Chen, X. and Lei, H., 2013. Impact of 3DVAR Data Assimilation on the Prediction of Heavy Rainfall Over Southern China. Advances in Meteorology. 1-17.
Jankov, I., W. A. Gallus, M. Segal, B. Shaw, and S. E. Koch, 2005. The Impact of Different WRF Model Physical Parameterizations and their Interactions on Warm Season MCS Rainfall. Wea. Forecasting, 20, 1048–1060, doi: 10. 1175/ WAF888.1.
Junnaedhi I., 2008. Pengaruh Asimilasi Data dengan Metode 3DVAR Terhadap Hasil Prediksi Cuaca Numerik di Indonesia. Meteorologi ITB. Bandung.
Kain J. S. and J. M. Fritsch, 1990. A One-Dimensional Entraining or Detraining Plume Model and Its Application in Convective Parameterization. J. Atmos. Sci., 47, No. 23, 2784–2802.
Kalnay, E., 2003. Atmospheric Modelling, Data Assimilation and Predictability. Cambridge University Press, Cambridge.
Lin, Y.-L., R. D., Farley, and H. D., Orville, 1983. Bulk Parameterization of the Snow Field in a Cloud Model. J. Climate Appl. Meteor, 22, 1065–1092.
Liu, Z., 2006. Radiance Data Assimilation in WRFDA. Summer WRFDA tutorial. Cited in http://www2.mmm.ucar. edu/ wrf/ users/wrfda/Tutorials/2011_July/docs/WRFDA_radiance.pdf [20 Februari 2017].
National Centers for Environmental Prediction/ NCEP Department of Commerce, 2008. NCEP ADP Global Upper Air, GDAS Satellite Data and Surface Weather Observations May 1997 - Continuing Research Data Archive at the National Center for Atmospheric Research, Computational and Information Systems Laboratory Boulder CO. Cited in http: //rda.ucar. edu/datasets/ds337.0/ [20 Februari 2017].
Paski, J.A.I., 2016. Pengaruh Asimilasi Data Radar C-Band dalam Prediksi Cuaca Numerik (Studi Kasus di Lampung). Skripsi Diploma IV Sekolah Tinggi Meteorologi Klimatologi dan Geofisika. Jakarta.
Paski, J.A.I., A. Sepriando, & D.A.S., Pertiwi, 2017a. Pemanfaatan Teknik RGB pada Citra Satelit Himawari-8 untuk Analisa Dinamika Atmosfer Kejadian Banjir Pulau Jawa 20 - 21 Februari 2017. Prosiding Seminar Nasional HMD 67 STMKG. Jakarta.
Paski, J.A.I., A., Sepriando, A. E., Sakya, A. S., Handayani, D. A. S., Pertiwi, S. Noviati, 2017b. Identifikasi Northerly Cold Surge (NCS) Memanfaatkan Numerical Weather Prediction (NWP) dan Teknik RGB Airmass pada Satelit Himawari-08. Prosiding Seminar Nasional Sains Atmosfer LAPAN. Bandung.
Pielke, R. A. Sr., Matsui, T., Leoncini, G., Nobis, T., Nair, U. S., Lu, E., Eastman, J., Kumar, S., Peters-Lidard, C. D., Tian, Y., dan Walku, R. L., 2006. A New Paradigm for Parameterizations in Numerical Weather Prediction and Other Atmospheric Models, National Weather Digest, 30, 93-99.
Rutledge G. K., Alpert J., Ebuisaki W., 2006. NOMADS: A Climate and Weather Model Archive at the National Oceanic and Atmospheric Administration Bull. Amer. Meteor. Soc., 87, 327-341.
Sagita, N., Hidayati, R., Hidayat, R., & Gustari, I., 2017. Satellite Radiance Data Assimilation for Rainfall Prediction in Java Region. In IOP Conference Series: Earth and Environmental Science.
Sahu, D.K., Dash, S.K., Bhan, S.C., 2014. Impact of Surface Observations on Simulation of Rainfall Over NCR Delhi Using Regional Background Error Statistic in WR-3DVAR Model. Meterolo Atmos Phys. 125, 17-42.
Skamarock W. C., Klemp J. B., Dudhia J., Gill D. O., Barker D. M., Wang W., and Powers J.G., 2005. A Description of the Advanced Research WRF version 2 (No. NCAR/TN-468+ STR). National Center For Atmospheric Research Boulder Co Mesoscale and Microscale Meteorology Div.
Sun, J., 2010. Doppler Radar Data Assimilation with WRFDA. NCAR. Cited in http:// www2.mmm.ucar.edu/wrf/users/wrfda/ Tutorials/2010_Feb/docs/WRFVAR_Tut_RADAR_Feb10.pdf [20 Februari 2017]
Talagrand O., 1997. Assimilation of Observation, an Introduction. J. Met.Soc Japan Special 75, 191-209.
Tian, Y., C. D., Peters-Lidard, R. F., Adler, T., Kubota, and T., Ushio, 2010. Evaluation of GSMaP Precipitation Estimates over Contiguous U.S. J. Hydrometeor., 11, 566-574.
Refbacks
- There are currently no refbacks.