OPTIMASI PARAMETER DALAM KLASIFIKASI SPASIAL PENUTUP PENGGUNAAN LAHAN MENGGUNAKAN DATA SENTINEL SAR (PARAMETERS OPTIMIZATION IN SPATIAL LAND USE LAND COVER CLASSIFICATION USING SENTINEL SAR DATA)
Abstract
In this study, application of Sentinel-1 Synthetic Aperture Radar (SAR) data for the land use cover classification was investigated. The classification was implemented with supervised Neural Network classifier for Dual polarization (VH and VV) Sentinel-1 data using texture information of gray level co-occurance matrix (GLCM). The purpose of this study was to obtain the optimum parameters in the extraction of texture information of pixel window size, the orientation of neighboring relationships on the texture feature extraction, and the type of texture information feature used for the classification. The classification results showed that in the study area, the best accuracy obtained is 5 × 5 pixel window size, 00 orientation angle, and the use of entropy texture information as classification input. It was also found that more features texture information used as classification input can improve the accuracy, and with careful selection of appropriate texture information as classification input will give the best accuracy.
Â
Abstrak
Pada penelitian ini dilakukan kajian mengenai klasifikasi penutup penggunaan lahan menggunakan data Sentinel-1 yang merupakan data Synthetic Aperture Radar (SAR). Informasi tekstur digunakan sebagai masukan dalam pembuatan klasifikasi terbimbing Neural Network dengan menggunakan Dual polarization (VH dan VV). Klasifikasi dilakukan menggunakan informasi tekstur menggunakan Gray Level Co-occurance Matrix (GLCM) dari data Sentinel-1. Tujuan penelitian ini adalah mendapatkan parameter optimum dalam ekstraksi informasi, yaitu ukuran jendela pemrosesan, orientasi hubungan ketetanggaan pada ekstraksi fitur tekstur, serta jenis fitur informasi tekstur yang digunakan dalam klasifikasi. Hasil klasifikasi menunjukkan bahwa pada area yang dikaji, akurasi terbaik adalah pada ukuran jendela 5×5 piksel, sudut orientasi hubungan ketetanggaan 0º, serta penggunaan informasi tekstur entropy sebagai masukan dalam klasifikasi. Serta diketahui bahwa semakin banyak fitur informasi tekstur yang digunakan sebagai masukan klasifikasi dapat meningkatkan akurasi dan pemilihan informasi tekstur yang tepat sebagai masukan klasifikasi akan menghasilkan akurasi terbaik.
Keywords
Full Text:
PDFReferences
Baraldi, A., dan Parmiggiani, F., 1995. An Investigation of the Textural Characteristics Associated with Gray Level Co-occurrence Matrix Statistical Parameters. IEEE Transactions on Geoscience and Remote Sensing, 33(2), 293-304.
Barber, D. G. dan LeDrew, E. F., 1991. SAR Sea Ice Discrimination Using Texture Statistics: A Multivariate Approach. Photogrammetric Engineering and Remote Sensing, 57(4), 385-395.
Cazals, C., Rapinel, S., Frison, P. L., Bonis, A., Mercier, G., Mallet, C., Corgne, S., dan Rudant, J. P., 2016. Mapping and Characterization of Hydrological Dynamics in a Coastal Marsh Using High Temporal Resolution Sentinel-1A Images. Remote Sensing 8(7), 570.
Clausi, D. A., dan Jernigam, M. E., 1998. A Fast Method to Determine Co-Occurrence Texture Features. IEEE Transactions on Geoscience and Remote Sensing, 36(1), 298-300.
Congalton, R. G., dan Green K., 2008. Assessing the Accuracy of Remotely Sensed Data – Principles and Practices. Second Edition. CRC Presss/Taylor & Francis.
Conners, R. W., dan Harlow, C. A., 1980. A Theorical Comparison of Texture Algorithms. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2(3), 204-222.
Dekker, R. J., 2003. Texture Analysis and Classification of ERS SAR Images for Map Updating of Urban Areas in The Netherlands. IEEE Transactions on Geoscience and Remote Sensing, 41(9), 1950-1958.
ESA, 2017. SNAP - ESA Sentinel Application Platform v2.0.2, http://step.esa.int diakses Januari 2017.
Franklin, S. E., Wulder, M. A., dan Gerylo, G. R., 2001. Texture Analysis of IKONOS Panchromatic Data for Douglas-Fir Forest Age Class Separability in British Columbia. International Journal of Remote Sensing, 22(13), 2627–2632.
Geudner, D., Torres, R., Snoeij, P., Davidson, M., dan Rommen, B., 2014. Sentinel-1 System Capabilities and Applications. Geoscience and Remote Sensing Symposium (IGARSS), 13-18 Juli 2014. Quebec City.
Gong, P., Marceau, D. J., and Howarth, P. J., 1992. A Comparison of Spatial Feature Extraction Algorithms for Land-Use Classification with SPOT HRV Data. Remote Sensing Environment, 40, 137-151.
Haralick, R. M., 1985. Statistical and Structural Approaches to Texture. 304-322. In Chellappa, R. dan Sawchuk A. A. (ed.) Digital Image Processing and Analysis: Volume 2: Digital Image Analysis. IEEE Computer Society Press, New York.
Haralick, R. M., Shanmugam, K., dan Dinstein, I. (1973). Textural Feature for Image Classification. IEEE Transactions on Systems, Man and Cybernetics, 3(6), 610-621.
Hasyim, B., Sulma, S., dan Hartuti, M., 2010. Kajian Dinamika Suhu Permukaan Laut Global Menggunakan Data Penginderaan Jauh Microwave. Majalah Sains dan Teknologi Dirgantara, 5(4), 130-143.
He, D. C., dan Wang, L., 1990. Texture Unit, Texture Spectrum, and Texture Analysis. IEEE Transactions on Geoscience and Remote Sensing, 28(4), 509-512.
Hutagalung, M. E., 2013. Model Spasial Pendugaan dan Pemetaan Biomassa di atas Permukaan Tanah Menggunakan Citra ALOS PALSAR Resolusi 12.5 M. Skripsi Institut Pertanian Bogor. 43.
Kayitakire, F., Hamel, C., dan Defourny, P., 2006. Retrieving Forest Structure Variables Based on Image Texture Analysis and IKONOS-2 Imagery. Remote Sensing of Environment, 102, 390-401.
Kruger, R. P., Thompson, W. B., dan Turner, A. F., 1974. Computer Diagnosis of Pheumoconiosis. IEEE Transactions on Systems, Man, and Cybernetics, 4(10, 40-49.
Kushardono, D., 1996. Metode Klasifikasi Citra Satelit Radar untuk Mengidentifikasi Penutup Lahan. Warta Inderaja-MAPIN. VIII(2), 36-44.
Kushardono, D., 2012. Klasifikasi Spasial Penutup Lahan Dengan Data SAR Dual Polarisasi Menggunakan Normalized Difference Polarization Index dan Fitur Keruangan Dari Matrik Kookurensi. Jurnal Inderaja, 9(1), 12-24.
Kushardono, D., 2016. Klasifikasi Penutup/ Penggunaan Lahan Dengan Data Satelit Penginderaan Jauh Hiperspektral (Hyperion) Menggunakan Metode Neural Network Tiruan. Jurnal Inderaja. 13(2), 85-96.
Kushardono, D., Fukue, K., Shimoda, H., dan Sakata, T., 1994. A Spatial Landcover Classification with The Aid of Neural Networks. In: Image and Signal Processing for Remote Sensing, edited by Desachy J., The Int. Soc. for Optical Engineering-SPIE, Pro. 2315, 702-710.
Kushwaha, S. P. S., Kuntx, S., dan Oesten, G., 1994. Applications of Image Texture in Forest Classification. International Journal of Remote Sensing, 15(110), 2273-2284.
Martono, D. N., 2008. Aplikasi Teknologi Penginderaan Jauh dan Uji Validasinya untuk Deteksi Penyebaran Lahan Sawah dan Penggunaan/Penutupan Lahan. Seminar Nasional Aplikasi Teknologi Informasi 2008, 21 Juni 2008. Yogyakarta.
Miranda, N., dan Meadows, P. J., 2015. Radiometric Calibration of S-1 Level-1 Products Generated by the S-1 IPF, ESA-EOPG-CSCOP-TN-0002; European Space Agency: Paris, France.
Miranda, N., Meadows, P. J., Pilgrim, A., Piantanida, R., Recchia, A., Giudici, A., Small, D., dan Schubert, A., 2016. Sentinel-1B Preliminary Results Obtained During the Orbit Acquisition Phase [Work in Progress]. Conference on ENTERprise Information Systems/International Conference on Project MANagement/ Conference on Health and Social Care Information Systems and Technologies, SENTERIS/ ProjMAN / HCist 2016, 5-7 Oktober 2016. Porto.
Mohanaiah, P., Sathyanarayana, P., dan Guru Kumar, L., 2013. Image Texture Feature Extraction Using GLCM Approach. International Journal of Scientific and Research Publications, 3(5), 1-5.
Mouche, A., dan Chapron, B., 2015. Global C-Band Envisat, RADARSAT-2 and Sentinel-1 Measurements in Co-Polarization and Cross-Polarization. Journal of Geophysical Research: Oceans, 120(11), 7195-7207.
Pacifici, F., Chini, M., dan Emery, W. J., 2009. A Neural Network Approach Using Multi-Scale Textural Metrics from Very High-Resolution Panchromatic Imagery for Urban Land-Use Classification. Remote Sensing of Environment, 113(6), 1276-1292.
Panuju, D. R., Heidina, F., Trisasongko, B. T., Tjahjono, B., Kasno, A., dan Syafril, H. A., 2009. Variasi Nilai Indeks Vegetasi Modis pada Siklus Pertumbuhan Padi. Jurnal Ilmiah Geomatika, 15(2), 9-16.
Pesaresi, M., 2000. Texture Analysis for Urban Pattern Recognition Using Fine-Resolution Panchromatic Satellite Imagery. Geographical and Environmental Modelling, 4(1), 43–63.
Prahasta, E., 2009. Sistem Informasi Geografis: Konsep-Konsep Dasar (Perspektif Geodesi dan Geomatika). Informatika Bandung.
Shanmugan, K., Narayanan, V., Frost, V. S., Stiles, J. A., dan Holtzman, J. C., 1981. Textural Features for Radar Image Analysis. IEEE Transactions on Geoscience and Remote Sensing, 19(3), 153-156.
Simard, M., Saatchi, S.S., dan Grandi G. D., 2000. The Use of Decision Tree and Multiscale Texture for Classification of JERS-1 SAR Data Over Tropical Forest. IEEETransactions on Geoscience and Remote Sensing, 38(5), 2310-2321.
Soh, L. K., dan Tsatsoulis, C., 1996. Texture Representation of SAR Sea Ice Imagery Using Multi-Displacement Co-Occurrence Matrices. IEEE Transactions on Geoscience and Remote Sensing, 37(2), 780-795.
Sonobe, R., Tani, H., Wang, X., Kobayashi, N., and Shimamura, H., 2014. Random Forest of Classification Crop Type Using Multi-Temporal TerraSAR-X Dual-Polarimetric Data. Remote Sensing Letters, 5(2), 157-164.
Su, W., Li, J., Chen, Y., Liu, Z., Zhang, J., Low, T. M., Suppiah, I., dan Hashim, S. A. M., 2008. Textural and Local Spatial Statistics for The Object-Oriented Classification of Urban Areas Using High Resolution Imagery. International Journal of Remote Sensing, 29(11), 3105-3117.
Sutanto, A., Trisakti, B., dan Arimurthy, A. M., 2014. Perbandingan Klasifikasi Berbasis Obyek dan Klasifikasi Berbasis Piksel pada Data Citra Satelit Synthetic Aperture Radar untuk Pemetaan Lahan. Jurnal Penginderaan Jauh dan Pengolahan Citra Digital, 11(1), 63-75.
Suwargana, N., 2008. Analisis Perubahan Hutan Mangrove Menggunakan Data Penginderaan Jauh di Pantai Bahagia, Muara Gembong, Bekasi. Jurnal Penginderaan Jauh, 5, 64-74.
Suwarsono., Yudhatama, D., Trisakti, B., dan Sambodo, K. A., 2013. Pemanfaatan Citra Pi-SAR2 untuk Identifikasi Sebaran Endapan Piroklastik Hasil Erupsi Gunungapi Gamalama Kota Ternate. Jurnal Penginderaan Jauh, 10(1), 15-26.
Tjahjono, B., Syafril, A. H. A., Panuju, D. R., Kasno, A., Trisasongko, B. H., dan Heidina, F., 2009. Pemantauan Lahan Sawah Menggunakan Citra ALOS AVNIR-2. Jurnal Ilmiah Geomatika, 15(2), 1-8.
Torres, R., Snoeij, P., Geudtner, D., Bibby, D., Davidson, M., Attema, E., Potin, P., Rommen, B., Floury, N., Brown, M., Traver, I. N., Deghaye, P., Duesmann, B., Rosich, B., Miranda, N., Bruno, C., L’Abbate, M., Croci, R., Pietropaolo, A., Huchler, M., dan Rostan, F., 2012. GMES Sentinel-1 Mission. Remote Sensing of Environment, 120(2012), 9-24.
Transactions on Geoscience and Remote Sensing, 24(2), 235-245.
Twelve, A., Cao, W., Plank, S., dan Martinis, S., 2016. Sentinel-1-based Flood Mapping: A Fully Automated Processing Chain. International Journal of Remote Sensing, 37(13), 2990-3004.
Ulaby, F. T., Kouyate, F., Brisco, B., dan Williams, T. H. L., 1986. Textural Infornation in SAR Images. IEEE.
Wen, C., Zhang, Y., dan Deng, K., 2009. Urban Area Classification in High Resolution SAR Based on texture Features. Geo-spatial Solutions for Emergency Management, 14-16 September 2009. Beijing.
Weszka, J. S., Dyer, C. R., dan Rosenfeld, A., 1976. A Comparative Study of Texture Measures for Terrain Classification. IEEE transactions on Systems, Man, and Cybernetics, 6(4), 269-285.
Wu, D., Yang, H., Chen, X., He, Yong., dan Li, X., 2008. Application of Image Texture for The Sorting of Tea Categories Using Multi-Spectral Imaging Technique and Support Vector Machine. Journal of Food Engineering, 88(4), 474-483.
Xiaofeng, L., 2015. The First Sentinel-1 SAR Image of a Typhoon. Acta Oceanologica Sinica, 34(1), 1-2.
Refbacks
- There are currently no refbacks.