ANALISIS KARAKTERISTIK TEMPERATUR AREA TERBAKAR (BURNED AREA) MENGGUNAKAN DATA LANDSAT-8 TIRS DI KALIMANTAN (ANALYZING THE TEMPERATURE CHARACTERISTICS OF BURNED AREA USING LANDSAT-8 TIRS IN KALIMANTAN)
Abstract
Biomass burning in an area will leave traces of fire such as charcoal, ash, and outcrop of land in the area known as the burned area. The burnt area is thought to have a relatively higher temperature than the surrounding area were not burned. This study aims to determine the characteristics of the temperature of the burned area using remote sensing data of Landsat-8 TIRS (Thermal Infra Red Sensor). The selected research locations are parts of Central Kalimantan and South Kalimantan incoming Landsat scene-8 path / row 118/062. The research method is a data processing Landsat-8 TIRS (channels 10 and 11) to produce an image of the brightness temperature as well as data analysis includes a statistical analysis of central tendency of the values of the brightness temperature of the sample (calculation of mean and standard deviation) as well as distance calculation (D-value). The results showed that the brightness temperature data either channel 10 or channel 11 Landsat-8 TIRS has good ability in separating the burned area and bare soil, but has a low ability to separate the burned areas and settlements. Thus, the brightness temperature parameter cannot be used as a single variable for the extraction of burned areas in a scene image of a single acquisition.
Â
ABSTRAK
Peristiwa kebakaran biomassa pada suatu daerah akan menyisakan bekas-bekas kebakaran seperti arang, abu, serta singkapan tanah pada daerah tersebut yang dikenal dengan burned area. Daerah bekas kebakaran tersebut diduga memiliki temperatur yang relatif lebih tinggi dibandingkan dengan daerah sekitarnya yang tidak terbakar. Penelitian ini bertujuan untuk mengetahui karakteristik temperatur burned area menggunakan data penginderaan jauh Landsat-8 Thermal Infra Red Sensor (TIRS). Lokasi penelitian yang dipilih adalah sebagian wilayah Kalimantan Tengah dan Kalimantan Selatan yang masuk scene Landsat-8 path/row 118/062. Metode penelitian yang dilakukan adalah pengolahan data Landsat-8 TIRS (kanal 10 dan 11) untuk menghasilkan citra suhu kecerahan serta analisis data yang meliputi analisis statistik tendensi sentral dari nilai-nilai suhu kecerahan dari sampel (perhitungan rerata dan standar deviasi) serta perhitungan jarak (D-value). Hasil penelitian menunjukkan bahwa data suhu kecerahan baik kanal 10 maupun kanal 11 Landsat-8 TIRS memiliki kemampuan yang baik dalam memisahkan burned area dan lahan terbuka, namun memiliki kemampuan yang rendah untuk memisahkan burned area dan permukiman. Dengan demikian, parameter suhu kecerahan belum bisa dipergunakan sebagai variabel tunggal untuk ekstraksi burned area pada suatu scene citra perekaman tunggal.
Keywords
Full Text:
PDFReferences
Aryanti, I, N. Sinukaban dan I N S Jaya, 2007.
Forest Fire Vulnerability index in West
Kalimantan Province, Tropical Forest
Management Journal, Bastarrika A,
Chuvieco E, Martin, M.P (2011).
Mapping burned areas from Landsat
TM/ETM+ data with a two-phase
algorithm: Balancing omission and
commission errors. Remote Sensing of
Environment 115:1003–1012.
Caselles V, Rubio E, Coll C, Valor E., 1998.
Thermal Band Selection for the PRISM
Instrument 3, Optimal band
configuration. Journal of Geophysical
Research 103: 17.057–17.067.
Chuvieco E., Englefield P., Trishchenko A. P,
dan Luo Y., 2008. Generation of Long
Time Series of Burn Area Maps of the
Boreal Forest from NOAA–AVHRR
Composite Data, Remote Sensing of
Environment 112: 2381 −2396.
Eggleston, S., Buendia, L., Miwa, K., Ngara, T.,
and Tanabe, 2006. 2006 IPCC
Guidelines for National Greenhouse Gas
Inventories. K. (Eds), Intergovernmental
Panel on Climate Change (IPCC), IPCC,
Hayama, Japan.
Irons J.R, Dwyer J.L, Barsi J.A., 2012. The Next
Landsat Satellite: The Landsat Data
Continuity Mission, Remote Sensing of
Environment 122: 11-21.Jaya, I N.S.,
Detecting Burnt Forest Damage
Using Digital Spot Imagery. Tropical
Forest Management Journal. Vol. 6 (l):
-23.
Jaya, I N. S. M. Ikhwan dan Nurhendra, 2000.
Teknik Mendeteksi Kebakaran Hutan
Melalui Citra Satelit Multi Waktu: Studi
kasus di Propinsi Sumatera Selatan dan
Riau, Tropical Forest Management
Journal. Vol VI(2):25-37.
Kaufman Y.J, Remer L.A., 1994. Detection of
Forest Fire using Mid-IR Reflectance:
and Application Fro Aerosols Study,
IEEE Transactions on Geoscience and
Remote Sensing 32: 672-683.
Kurnia, E, I N S Jaya, Widiatmaka, 2016.
Satellite-based Land Surface
Temperature Estimation of Bogor
Municipality, Indonesia, Indonesian
Journal of Electrical Engineering and
Computer Science. Volume 2 No 1. Pp
-228
Purnama, E.S dan I N S Jaya, 2006. Forest
Fire Vulnerabiility index in Riau Province,
Tropical Forest Management Journal.
Roy D.P, Wulder M.A, Loveland T.R, Woodcock
C.E, Allen R.G, Anderson M.C, Helder D,
Irons J.R, Johnson D.M, Kennedy R.,
Scambos T.A, Schaaf, C.B, Schott J.R,
Sheng Y., Vermote E.F, Belward A.S,
Bindschadler R., Cohen W.B, Gao F,
Hipple J.D, Hostert P, Huntington J,
Justice C.O, Kilic A, Kovalskyy V, Lee
Z.P, Lymburner L, Masek J.G, McCorkel
J, Shuai Y, Trezza R, Vogelmann J,
Wynne R.H, Zhu Z., 2014. Landsat-8:
Science and Product Vision for
Terrestrial Global Change Research,
Remote Sensing of Environment 145:
-172.
Samsuri, Jaya INS, Syaufina L., 2012. Model
Spasial Tingkat Kerawanan Kebakaran
Hutan dan Lahan (Studi Kasus Propinsi
Kalimantan Tengah, Foresta, Vol No (1)
Spatial model of forest and land
fire risk (A case study in Central
Kalimantan Province, Foresta, Vol No
(1) 2012 (in Indonesian). Faperta USU -
Persatuan Peneliti Kehutanan Sumut;
No.ISSN: 2089-9890; Vol.1; No.1;
Maret;2012;12-18, http://kehutanan.
usu.ac.id
Stroppiana D, Bordogna G, Carrara P,
Boschetti M, Bosschetti L, Brivio P.A.,
A Method for Extracting Burned
Areas from Landsat TM/ETM+ Images
by Soft Aggregation of Multiple Spectral
Indices and a Region Growing Algorithm,
ISPRS Journal of Photogrammetry and
Remote Sensing 69:88–102.
Suwarsono, 2014. Deteksi Daerah Bekas
Kebakaran Hutan/Lahan (Burned Area)
Menggunakan Citra Penginderaan Jauh,
Crestpent Press.
Suwarsono, Rokhmatuloh, dan Waryono T.,
Pengembangan Model Identifikasi
Daerah Bekas Kebakaran Hutan dan
Lahan (Burned Area) Menggunakan
Citra MODIS di Kalimantan, Jurnal
Penginderaan Jauh dan Pengolahan
Data Citra Digital 10(2): 93-112.
Thonicke K, Spessa A, Prentice I. C, Harrison S.
P, Dong L, Carmona-Moreno C., 2010.
The Influence of Vegetation, Fire Spread
and Fire Behaviour on Biomass Burning
and Trace Gas Emissions: Results from
a Process-Based Model, Biogeosciences
(7): 697 −743.
USGS, 2015. Landsat 8 (L8) Data Users,
Handbook Version 1.0. EROS Sioux
Falls, South Dakota.
Refbacks
- There are currently no refbacks.