PERBANDINGAN HASIL KLASIFIKASI LIMBAH LUMPUR ASAM DENGAN METODE SPECTRAL ANGLE MAPPER DAN SPECTRAL MIXTURE ANALYSIS BERDASARKAN CITRA LANDSAT - 8

Sayidah Sulma, Junita Monika Pasaribu, Hana Listi Fitriana, Nanik Suryo Haryani

Abstract

The utilization of remote sensing data is an alternative way that could be used for rapid detection of large coverage hazardous waste area. This study aims to classify the acid sludge contaminated area using Landsat 8 by applying Spectral Angle Mapper (SAM) classification method with two spectral reference sources, namely field spectral measurement using a spectrometer and endmember spectral from the image, and then compare the classification results. The accuracy level of SAM classification result showed that classification using endmember spectral from the image as the reference spectral reached 66,7%, whereas classification using field spectral measurement as spectral reference only reached 33,3%. The accuracy level of Spectral Mixture Analysis (SMA) classification result showed that classification using endmember spectral from the image as the reference spectral reached 62,5%. The affecting factors for the low accuracy is the significant differences of the spectral profiles obtained from spectrometer with spectral Landsat-8 due to differences of spatial and altitude Keywords: Acid sludge Waste, Spectral Angle Mapper, Spectral Mixture Analysis, Landsat-8

 

ABSTRAK

Pemanfaatan data penginderaan jauh merupakan salah satu alternatif yang dapat digunakan untuk deteksi daerah tercemar limbah B3 secara cepat dengan wilayah yang luas. Penelitian ini bertujuan untuk mengklasifikasi daerah tercemar lumpur asam menggunakan data Landsat 8 dengan metode Spectral Angle Mapper (SAM), kemudian membandingkan hasil klasifikasi SAM menggunakan spektral referensi berdasarkan pengukuran spektrometer dengan spektral yang diperoleh dari endmember citra. Tingkat akurasi klasifikasi SAM dengan spektral referensi berdasarkan endmember citra adalah sebesar 66,7 %, sedangkan dengan menggunakan referensi spektrometer hanya mencapai 33,3 %. Tingkat akurasi klasifikasi Spectral Mixture Analysis (SMA) dengan spektral referensi berdasarkan endmember citra adalah sebesar 62,5 %. Faktor yang mempengaruhi rendahnya akurasi adalah perbedaan yang signifikan antara profil spektral yang diperoleh dari spektrometer dengan spektral Landsat-8 akibat perbedaan spasial dan ketinggian.

Keywords

Limbah lumpur asam; Spectral Angle Mapper; Spectral Mixture Analysis; Landsat-8; Acid sludge Waste

Full Text:

PDF

References

Adams, J. B., & Gillespie, A. R., 2006. Remote

Sensing of Landscapes with Spectral

Images: A Physical Modeling Approach,

Cambridge, UK: Cambridge University

Press 362 pp.

Boardman, J., 1993. Automatic Spectral

Unmixing of AVIRIS Data Using Convex

Geometry Concepts, In: Annual JPL

Airborne Geosciences Workshop, 4,

Pasadena, CA. Summaries, JPL

Publication, pp.93-26.

Haryani, N.S., S. Sulma, and J.M. Pasaribu,

Detection of Acid Sludge

Contaminated Area Based on

Normalized Difference Vegetation Index

(NDVI) Value, Proceeding of The 34th

ACRS (Asean Conference on Remote

Sensing), Bridging Sustainanle Asia,

-24 Oktober 2013, Bali.

Haryani, N.S., S. Sulma, J.M. Pasaribu, dan

H.L. Fitriana, 2015. Karakteristik Pola

Spektral pada Daerah Tercemar Limbah

B3, Prosiding PIT MAPIN 2015. Bogor.

Haryani, N.S., S. Sulma, J.M. Pasaribu, dan

H.L. Fitriana, 2015. Klasifikasi Daerah

Tercemar Limbah Acid Sludge

Menggunakan Metode Spectral Mixture

Analysis Berbasis Data Landsat 8.

Jurnal Penginderaan Jauh dan

Pengolahan data Citra Digital, Vol.12,

No.1, Juni 2015, pp. 13-28.

Johnson, R.W. and Tothill, J.C., 1985. Definition

and Broad Geographic Outline of

Savanna Lands, in Ecology and

Management of the World’s Savannas,

Edited by J.C. Tothill, J.J.Mott,

Australlian Academia of Science,

Canberra.

Kruse, F.A., 1993. The Effects of AVIRIS

Atmosfer Calibration Methodology on

Identification and Quantitative Mapping

of Surface Mineralogy, Drums

Mountains, Utah, in Summaries of the

Fourth Airborne Geoscience Workshop,

pp.101-104.

Mumby, P.J., and C.D. Clark, 2000.

Radiometric Correction of Satellite and

Airborne Images, In: Green, E.P.,

Mumby, P.J., Edwards, A.J. and Clark,

C.D. Remote Sensing Handbook for

Tropical Coastal Management. Coastal

Management Sourcebooks 3, UNESCO,

Paris, 109 –120.

Pertamina, 2011. Laporan progres tindak lanjut

pengelolaan acid sludge, Pertamina

Refinery Unit V, Balikpapan.

Pertamina, 2012. Laporan progress pemulihan

lahan terkontaminasi acid sludge di

Main Flare, Pertamina Refinery Unit V,

Balikpapan.

Petropoulos, G. P., K. P. Vadrevu, G.

Xanthopoulos, G. Karantounias, and

M. Scholze, 2010. A Comparison of

Spectral Angle Mapper and Artificial

Neural Network Classifiers Combined

with Landsat TM Imagery Analysis for

Obtaining Burnt Area Mapping, Sensors

(Basel, Switzerland), 10(3), 1967–1985.

doi:10.3390/s100301967.

Sulma, S., J.M. Pasaribu, dan N.S. Haryani,

Deteksi Daerah Tercemar Lumpur

Asam Menggunakan data Landsat 7

ETM Berdasarkan Suhu Permukaan

Tanah, Jurnal Penginderaan Jauh dan

Pengolahan data Citra Digital, Vol.11,

No.2, pp. 76-87.

USGS, 2015. Using the USGS Landsat 8

Product, http://l andsat.usgs.gov/

Landsat8_Using_Product.php. [Akses

Februari 2015]

Visa, S., B. Ramsay, A. Ralescu, and E.

VanDerKnaap, 2011. Confusion MatrixBased

Feature Selection. Proceedings of

The 22nd Midwest Artificial Intelligence

and Cognitive Science Conference, pp.

-127.

Refbacks

  • There are currently no refbacks.