PERBANDINGAN HASIL KLASIFIKASI LIMBAH LUMPUR ASAM DENGAN METODE SPECTRAL ANGLE MAPPER DAN SPECTRAL MIXTURE ANALYSIS BERDASARKAN CITRA LANDSAT - 8
Abstract
The utilization of remote sensing data is an alternative way that could be used for rapid detection of large coverage hazardous waste area. This study aims to classify the acid sludge contaminated area using Landsat 8 by applying Spectral Angle Mapper (SAM) classification method with two spectral reference sources, namely field spectral measurement using a spectrometer and endmember spectral from the image, and then compare the classification results. The accuracy level of SAM classification result showed that classification using endmember spectral from the image as the reference spectral reached 66,7%, whereas classification using field spectral measurement as spectral reference only reached 33,3%. The accuracy level of Spectral Mixture Analysis (SMA) classification result showed that classification using endmember spectral from the image as the reference spectral reached 62,5%. The affecting factors for the low accuracy is the significant differences of the spectral profiles obtained from spectrometer with spectral Landsat-8 due to differences of spatial and altitude Keywords: Acid sludge Waste, Spectral Angle Mapper, Spectral Mixture Analysis, Landsat-8
Â
ABSTRAK
Pemanfaatan data penginderaan jauh merupakan salah satu alternatif yang dapat digunakan untuk deteksi daerah tercemar limbah B3 secara cepat dengan wilayah yang luas. Penelitian ini bertujuan untuk mengklasifikasi daerah tercemar lumpur asam menggunakan data Landsat 8 dengan metode Spectral Angle Mapper (SAM), kemudian membandingkan hasil klasifikasi SAM menggunakan spektral referensi berdasarkan pengukuran spektrometer dengan spektral yang diperoleh dari endmember citra. Tingkat akurasi klasifikasi SAM dengan spektral referensi berdasarkan endmember citra adalah sebesar 66,7 %, sedangkan dengan menggunakan referensi spektrometer hanya mencapai 33,3 %. Tingkat akurasi klasifikasi Spectral Mixture Analysis (SMA) dengan spektral referensi berdasarkan endmember citra adalah sebesar 62,5 %. Faktor yang mempengaruhi rendahnya akurasi adalah perbedaan yang signifikan antara profil spektral yang diperoleh dari spektrometer dengan spektral Landsat-8 akibat perbedaan spasial dan ketinggian.
Keywords
Full Text:
PDFReferences
Adams, J. B., & Gillespie, A. R., 2006. Remote
Sensing of Landscapes with Spectral
Images: A Physical Modeling Approach,
Cambridge, UK: Cambridge University
Press 362 pp.
Boardman, J., 1993. Automatic Spectral
Unmixing of AVIRIS Data Using Convex
Geometry Concepts, In: Annual JPL
Airborne Geosciences Workshop, 4,
Pasadena, CA. Summaries, JPL
Publication, pp.93-26.
Haryani, N.S., S. Sulma, and J.M. Pasaribu,
Detection of Acid Sludge
Contaminated Area Based on
Normalized Difference Vegetation Index
(NDVI) Value, Proceeding of The 34th
ACRS (Asean Conference on Remote
Sensing), Bridging Sustainanle Asia,
-24 Oktober 2013, Bali.
Haryani, N.S., S. Sulma, J.M. Pasaribu, dan
H.L. Fitriana, 2015. Karakteristik Pola
Spektral pada Daerah Tercemar Limbah
B3, Prosiding PIT MAPIN 2015. Bogor.
Haryani, N.S., S. Sulma, J.M. Pasaribu, dan
H.L. Fitriana, 2015. Klasifikasi Daerah
Tercemar Limbah Acid Sludge
Menggunakan Metode Spectral Mixture
Analysis Berbasis Data Landsat 8.
Jurnal Penginderaan Jauh dan
Pengolahan data Citra Digital, Vol.12,
No.1, Juni 2015, pp. 13-28.
Johnson, R.W. and Tothill, J.C., 1985. Definition
and Broad Geographic Outline of
Savanna Lands, in Ecology and
Management of the World’s Savannas,
Edited by J.C. Tothill, J.J.Mott,
Australlian Academia of Science,
Canberra.
Kruse, F.A., 1993. The Effects of AVIRIS
Atmosfer Calibration Methodology on
Identification and Quantitative Mapping
of Surface Mineralogy, Drums
Mountains, Utah, in Summaries of the
Fourth Airborne Geoscience Workshop,
pp.101-104.
Mumby, P.J., and C.D. Clark, 2000.
Radiometric Correction of Satellite and
Airborne Images, In: Green, E.P.,
Mumby, P.J., Edwards, A.J. and Clark,
C.D. Remote Sensing Handbook for
Tropical Coastal Management. Coastal
Management Sourcebooks 3, UNESCO,
Paris, 109 –120.
Pertamina, 2011. Laporan progres tindak lanjut
pengelolaan acid sludge, Pertamina
Refinery Unit V, Balikpapan.
Pertamina, 2012. Laporan progress pemulihan
lahan terkontaminasi acid sludge di
Main Flare, Pertamina Refinery Unit V,
Balikpapan.
Petropoulos, G. P., K. P. Vadrevu, G.
Xanthopoulos, G. Karantounias, and
M. Scholze, 2010. A Comparison of
Spectral Angle Mapper and Artificial
Neural Network Classifiers Combined
with Landsat TM Imagery Analysis for
Obtaining Burnt Area Mapping, Sensors
(Basel, Switzerland), 10(3), 1967–1985.
doi:10.3390/s100301967.
Sulma, S., J.M. Pasaribu, dan N.S. Haryani,
Deteksi Daerah Tercemar Lumpur
Asam Menggunakan data Landsat 7
ETM Berdasarkan Suhu Permukaan
Tanah, Jurnal Penginderaan Jauh dan
Pengolahan data Citra Digital, Vol.11,
No.2, pp. 76-87.
USGS, 2015. Using the USGS Landsat 8
Product, http://l andsat.usgs.gov/
Landsat8_Using_Product.php. [Akses
Februari 2015]
Visa, S., B. Ramsay, A. Ralescu, and E.
VanDerKnaap, 2011. Confusion MatrixBased
Feature Selection. Proceedings of
The 22nd Midwest Artificial Intelligence
and Cognitive Science Conference, pp.
-127.
Refbacks
- There are currently no refbacks.