ANALISIS PENERAPAN METODE GAP FILLING UNTUK OPTIMALISASI PEROLEHAN DATA SUHU PERMUKAAN LAUT BEBAS AWAN DI SELAT BALI

Dinarika Jatisworo, Ari Murdimanto, Denny Wijaya Kusuma, Bambang Sukresno, Dessy Berlianty

Abstract

Sea Surface Temperature (SST) sensed from infrared satellite sensors has a limitation caused by clouds cover. This limitation affects SST data to be not optimal because there are many empty areas without SST information. Gap Filling is a simple method for combining multitemporal satellite data to generate cloud free data. This research will apply Gap Filling method from two SST data, namely Himawari-8 and Multiscale Ultrahigh Resolution Sea Surface Temperature (MUR-SST). Cloud free daily SST data generated by this method has ~2 Km spatial resolution and daily temporal resolution. Validation of cloud-free SST data using in situ measurement data shows Mean Absolute Deviation (MAD) value 0.29 is smaller than MAD value from MUR-SST and Himawari-8 data. High correlation between cloud free SST data and insitu data is reflected from Kendall's Tau correlation value of 0.7966 or 79.66% and R2 with 0.93 value. These results indicate that the cloud free daily SST data can be used as valid estimation of SST condition in Bali Strait.

Keywords

Sea Surface Temperature, Cloud Free, Himawari-8, MUR-SST, Gap Filling

Full Text:

PDF

References

Addesso, P., Longo, M., Montone, R., Restaino, R., & Vivone, G. (2017). Interpolation and combination rules for the temporal and spatial enhancement of SEVIRI and MODIS thermal image sequences. International Journal of Remote Sensing, 38(7), 1889–1911. https://doi.org/10.1080/01431161.2017.1283075.

Barton, I. J., & Barton, I. J. (2007). Comparison of In Situ and Satellite-Derived Sea Surface Temperatures in the Gulf of Carpentaria. Journal of Atmospheric and Oceanic Technology, 24(10), 1773–1784. https://doi.org/10.1175/JTECH2084.1.

Chin, T. M., Vazquez-Cuervo, J., & Armstrong, E. M. (2017). A multi-scale high-resolution analysis of global sea surface temperature. Remote Sensing of Environment, 200,154–169. https://doi.org/10.1016/j.rse.2017.07.029.

Ditri, A., Minnett, P., Liu, Y., Kilpatrick, K., & Kumar, A. (2018). The Accuracies of Himawari-8 and MTSAT-2 Sea-Surface Temperatures in the Tropical Western Pacific Ocean. Remote Sensing, 10(2), 212. https://doi.org/10.3390/rs10020212.

Donlon, C. J., Minnett, P. J., Gentemann, C., Nightingale, T. J., Barton, I. J., Ward, B., … Murray, M. J. (2002). Toward Improved Validation of Satellite Sea Surface Skin Temperature Measurements for Climate Research. Journal of Climate,15(4),353–369. https://doi.org/10.1175/1520-0442(2002)015<0353:TIVOSS>2.0.CO;2.

Faye, S., Lazar, A., Sow, B. A., & Gaye, A. T. (2015). A model study of the seasonality of sea surface temperature and circulation in the Atlantic North-eastern Tropical Upwelling System. Frontiers in Physics, 3, 76. https://doi.org/10.3389/fphy.2015.00076.

França, G. B., Paes, R. C., Oliveira, A. N., Ruivo, B. C., & Neto, A. S. (2014). Daily Blended Microwave and Infrared Sea Surface Temperature Composition. Revista Brasileira de Geofísica,31(2). https://doi.org/10.22564/rbgf.v31i2.21.

Henn, B., Raleigh, M. S., Fisher, A., Lundquist, J. D., Henn, B., Raleigh, M. S., … Lundquist, J. D. (2013). A Comparison of Methods for Filling Gaps in Hourly Near-Surface Air Temperature Data. Journal of Hydrometeorology, 14(3), 929–945. https://doi.org/10.1175/JHM-D-12-027.1.

Iswari, P.Y. (2017). Pendugaan Selang Kepercayaan Rata-Rata Populasi Dengan Kondisi Adanya Pencilan. Skripsi Program Studi Matematika Universitas Sanata Dharma. Yogyakarta. 140 hlm.

Kumar, M. (2003). Digital Image Processing. In and S. K. S. M.V.K. Sivakumar, P.S. Roy, K. Harmsen (Ed.), Satellite Remote Sensing and GIS Applications in Agricultural Meteorology (pp. 81–102). India: Agricultural Meteorology Programme (AgMP). Cited in http://www.wamis.org/agm/pubs/agm8/Paper-5.pdf [5 Maret 2018].

Kurihara, Y., Murakami, H., & Kachi, M. (2016). Sea surface temperature from the new Japanese geostationary meteorological Himawari-8 satellite. Geophysical Research Letters, 43(3), 1234–1240. https://doi.org/10.1002/2015GL067159.

Nababan, B., (2016). Variabilitas Suhu Permukaan Laut Dan Konsentrasi Klorofil-A Di Perairan Teluk Jakarta Dan Sekitarnya. Jurnal Ilmu dan Teknologi Kelautan Tropis, 8(1), 385-402.

Studley, H., & Weber, K. T. (2010). Final Report: Assessing Post-Fire Recovery of Sagebrush-Steppe Rangelands in Southeastern Idaho Comparison of Image Resampling Techniques for Satellite Imagery. idaho. Cited in http://giscenter.isu.edu/research/Techpg/nasa_postfire/pdf/Ch15.pdf [5 Maret 2018].

Susilo, E. (2015). Variabilitas Faktor Lingkungan Pada Habitat Ikan Lemuru Di Selat Bali Menggunakan Data Satelit Oseanografi dan Pengukuran Insitu. Cited in http://www.omniakuatika.net/10.20884/1.OA.2015.01002.pdf [14 Mei 2018].

Thompson, R.E., & Emery, W.J., (2014). Data Analysis Methods In Physical Oceanography. Elsevier.

Vazquez-Cuervo, J., Dewitte, B., Chin, T. M., Armstrong, E. M., Purca, S., & Alburqueque, E. (2013). An analysis of SST gradients off the Peruvian Coast: The impact of going to higher resolution. Remote Sensing of Environment, 131, 76–84. https://doi.org/10.1016/j.rse.2012.12.010.

Wade, T., & Sommer, S. (2006). A to Z GIS : an illustrated dictionary of geographic information systems. ESRI Press. Cited in http://esripress.esri.com/display/index.cfm?fuseaction=display&moduleID=0&websiteID=102 [5 Maret 2018].

Yang, C.-S., Kim, S.-H., Ouchi, K., & Back, J.-H. (2015). Generation of high resolution sea surface temperature using multi-satellite data for operational oceanography. Acta Oceanologica Sinica, 34(7), 74–88. https://doi.org/10.1007/s13131-015-0694-8.

Refbacks

  • There are currently no refbacks.