DINAMIKA LUASAN MANGROVE DI PESISIR PROBOLINGGO MENGGUNAKAN CITRA SATELIT
Abstract
Indonesia has the most extensive mangrove ecosystem in the world. One of mangrove ecosystem is located at Probolinggo coastal area, East Java Province. The mangrove area changes, over time whether it's decreasing or increasing. This research aims to calculate the extent of mangrove ecosystem in the past 20 years and map the distribution of mangrove in three different times i.e. 1998, 2008, and 2018. The satellite imageries used in this research are 1998’s Landsat 5 TM imagery, 2008’s Landsat 7 ETM+ imagery, and 2018’s Landsat 8 OLI imagery. Object-Based Image Analysis (OBIA) was employed to classify the mangrove and calculate the area for the 1998, 2008, and 2018 respective year. Normalized Difference Vegetation Index (NDVI) was used to determine the density level of mangrove canopy based on an object’s response to spectrum radiation red and NIR. The result shows that the mangrove area decreased from 1998 to 2008 constituting 514 Ha, and 386 Ha respectively. The mangrove area increased to about 464 Ha in 2018. The average mangrove canopy densities referring to NDVI analysis are 0.22012, 0.119492, and -0.019555 in respective years of 1998, 2008, and 2018. Within these 20 years, based on BAPLAN Forestry’s table classification of mangrove forest density, the mangrove forest densities at Probolinggo coastal area are relatively low.
Keywords
Full Text:
PDFReferences
Campbell, J.B. 1996. Introduction to Remote Sensing. Taylor & Francis, London.
Ensiklopedi Jurnal Bumi. (2018). Hutan Mangrove. https://jurnalbumi.com/knol/hutan-mangrove/. [19 Agustus 2019]
Fahmi, Helfinalis, Yunia Witasari, Bayu Prayudha, Suyarso, Ricky Rositasari, Nurhayati, Fitri Budiyanto, Lestari, M. Hasanudin, Afdal, Yustian Rovi Alfiansah, Lies Indah Sutiknowati, Nurul Fitriya, Achmad Kadi, Hikmah Thoha, dan Dwi Eny Djoko Setyono. (2015). Kondisi Lingkungan Pesisir dan Perairan Probolinggo, Jawa Timur. LIPI Press: Jakarta.
Nada, Remilla S., (2018). Identifikasi Tutupan Lahan Menggunakan Citra Satelit Spot 7 dengan Metode OBIA. Skripsi Teknik Geodesi Institut Teknologi Nasional. Bandung.
Parangtritis Geomaritime Science Park. (2016). Perkembangan Landsat. https://pgsp.big.go.id/ perkembangan-landsat/ [28 Agustus 2019]
Pemerintah Kota Probolinggo. (2017). SIPP KEMENPAN RB. https://sipp.menpan.go.id/ pelayanan-publik/wilayah/provinsi-jawa-timur/ pemerintah-kota-probolinggo / [9 Agustus 2019]
Pusat Pemanfaatan Pengindraan Jauh LAPAN. (2015). Pedoman Pengolahan Data Penginderaan Jauh Landsat 8 untuk MPT. http://pusfatja.lapan.go.id/ files_uploads_ebook/pedoman/000_Buku_Pedoman_TSM_final.pdf [28 Agustus 2019]
PUSTEKDATA-LAPAN. (2018). Katalog Inderaja. Landsat 5. https://inderaja-catalog.lapan.go.id/ application_data/default/pages/about_Landsat-5.html [28 Agustus 2019]
Siaran Pers Nomor : SP. 58/HUMAS/PP/HMS.3/03/2017 PPID Kementrian Lingkungan Hidup dan Kehutanan.http://ppid.menlhk.go.id/siaran_pers/browse/561 [19 Agustus 2019]
Storey, James., Pasquale Scaramuzza, Gail Schmidt. (2005). Landsat 7 Scan Line Corrector-Off Gap Filled Product Development. Pecora 16 "Global Priorities in Land Remote Sensing".
Supriatna, W., dan Sukartono. (2002). Teknik Perbaikan Data Digital (Koreksi dan Penajaman) Citra Satelit. Buletin Teknik Pertanian. Pusat Penelitian dan Pengembangan Tanah dan Agroklimat, Bogor.
Suwargana, Nana. (2008). Analisis Perubahan Hutan Mangrove Menggunakan Data Pengindraan Jauh di Pantai Bahagia, Muara Gembong, Bekasi. Jurnal Pengindraan Jauh Vol. 5, 2008:64-74.
Wibowo, T. S. dan Suharyadi, R. (2009). Aplikasi Object-Based Image Analysis (OBIA) untuk Deteksi Perubahan Penggunaan Lahan Menggunakan Citra ALOS AVNIR-2. Jurnal Bumi Indonesia. Universitas Gadjah Mada, Yogyakarta.
Wicaksono, P. (2010). Uji Akurasi Data Kategori. Makalah Fakultas Geografi UGM. Kartografi dan Pengindraan Jauh, Fakultas Geografi, Universitas Gadjah Mada, Yogyakarta.
Refbacks
- There are currently no refbacks.