PEMANFAATAN DATA ENHANCED VEGETATION INDEX VIIRS DAN PERBANDINGAN DENGAN MODIS UNTUK PEMANTAUAN PERTUMBUHAN PADI DI PULAU JAWA

Anisa Rarasati, Dony Kushardono

Abstract

Beras merupakan salah satu makanan pokok masyarakat Indonesia yang banyak diproduksi di dalam negeri. Karena tingginya tingkat konsumsi beras, pemerintah perlu memprediksi produksi tanaman padi dalam negeri untuk membuat kebijakan. Prediksi produktifitas padi ini dapat dilakukan menggunakan data penginderaan jauh. Di Indonesia telah dibuat pedoman pengolahan prediksi padi oleh Pusat Pemanfaatan Penginderaan Jauh, LAPAN menggunakan enhanced vegetation index (EVI) yang berasal dari sensor Moderate Resolution Imaging Spectroradiometer (MODIS) satelit Terra. Selain itu, data MODIS juga banyak digunakan di bidang pertanian, khususnya padi. Tetapi data MODIS hampir berakhir masa berlakunya sehingga diperlukan data pengganti. Data Visible Infrared Imaging Radiometer Suite (VIIRS) didesain sebagai pengganti MODIS. Untuk itu, penelitian ini dilakukan untuk mengetahui hubungan EVI data dari VIIRS dan MODIS dalam tujuannya menggantikan data MODIS dalam pemantauan padi. Dan hasil yang didapatkan menunjukkan tingkat korelasi tinggi dengan R2 sebesar 0.84 antara kedua EVI tersebut. Oleh karena itu, EVI VIIRS memiliki potensi yang sangat baik untuk menggantikan EVI MODIS.

Keywords

VIIRS; MODIS; enhanced vegetation index

Full Text:

PDF

References

Aulia, M. R., Liyantono, Setiawan, Y., & Fatikhunnada, A. (2016). Drought Detection of West Java’s Paddy Field Using MODIS EVI Satellite Images (Case Study: Rancaekek and Rancaekek Wetan). Procedia Environmental Sciences, 33, 646–653. https://doi.org/10.1016/j.proenv.2016.03.119

Awad, M. M. (2019). An innovative intelligent system based on remote sensing and mathematical models for improving crop yield estimation. Information Processing in Agriculture, 6(3), 316–325. https://doi.org/10.1016/j.inpa.2019.04.001

Clauss, K., Ottinger, M., Leinenkugel, P., & Kuenzer, C. (2018). Estimating rice production in the Mekong Delta, Vietnam, utilizing time series of Sentinel-1 SAR data. International Journal of Applied Earth Observation and Geoinformation, 73(July), 574–585. https://doi.org/10.1016/j.jag.2018.07.022

Domiri, D. D., Noviar, H., & Anwar. (2015). Pengembangan Model Pertumbuhan Tanaman Padi Menggunakan Data EVI MODIS Multitemporal (Studi Kasus di Pulau Sulawesi). Seminar Nasional Penginderaan Jauh, 408–424. LAPAN : Bogor., 2015.

Domiri, D. D., Parsa, M. Harini, S. Rarasati A. (2019). Laporan Akhir Tahun Kegiatan Fase Pertumbuhan Padi.. Pusat Pemanfaatan Penginderaan Jauh, LAPAN

Huete, A., Didan, K., Miura, T., Rodriguez, E. ., Gao, X., & Ferreira, L. . (2002). Overview of the radiometric and biophysical performance of the MODIS vegetation indices. Remote Sensing of Environment, 83(1–2), 195–213. https://doi.org/10.1016/S0034-4257(02)00096-2

Jarchow, C. J., Didan, K., Barreto-Muñoz, A., Nagler, P. L., & Glenn, E. P. (2018). Application and comparison of the MODIS-derived enhanced vegetation index to VIIRS, landsat 5 TM and landsat 8 OLI platforms: A case study in the arid colorado river delta, Mexico. Sensors (Switzerland), 18(5). https://doi.org/10.3390/s18051546

Kushardono D. Pemanfaatan Data Satelit NOAA/AVHRR untuk Pendugaan Produksi Tanaman Padi pada Regional Jawa Barat. Kumpulan Makalah Kolokium Pemanfaatan Penginderaan Jauh Tahun 1990/1991, LAPAN, Jakarta 1991: No.D-I/01-1991, 241-268

Lestari, A. I., & Kushardono, D. (2019). the Use of C-Band Synthetic Aperture Radar Satellite Data for Rice Plant Growth Phase Identification. International Journal of Remote Sensing and Earth Sciences (IJReSES), 16(1), 31. https://doi.org/10.30536/j.ijreses.2019.v16.a3171

Li, P., Xiao, C., & Feng, Z. (2018). Mapping rice planted area using a new normalized EVI and SAVI (NVI) derived from landsat-8 OLI. IEEE Geoscience and Remote Sensing Letters, 15(12), 1822–1826. https://doi.org/10.1109/LGRS.2018.2865516

Mauludyani, A. V. R., Martianto, D., & Baliwati, Y. F. (2008). Pola Konsumsi Dan Permintaan Pangan Pokok Berdasarkan Analisis Data Susenas 2005. Jurnal Gizi Dan Pangan, 3(2), 101. https://doi.org/10.25182/jgp.2008.3.2.101-117

Miura, T., Muratsuchi, J., & Vargas, M. (2018). Assessment of cross-sensor vegetation index compatibility between VIIRS and MODIS using near-coincident observations. Journal of Applied Remote Sensing, 12(04), 1. https://doi.org/10.1117/1.jrs.12.045004

Muhammad, M., Liyantono, Setiawan, Y., & Fatikhunnada, A. (2016). Analysis of the Dynamics Pattern of Paddy Field Utilization Using MODIS Image in East Java. Procedia Environmental Sciences, 33, 44–53. https://doi.org/10.1016/j.proenv.2016.03.055

Murphy, R. E., Barnes, W. L., Lyapustin, A. I., Privette, J., Welsch, C., DeLuccia, F., … Kealy, P. S. M. (2001). Using VIIRS to provide data continuity with MODIS. International Geoscience and Remote Sensing Symposium (IGARSS), 3(C), 1212–1214. https://doi.org/10.1109/igarss.2001.976795

Peng, D., Huete, A. R., Huang, J., Wang, F., & Sun, H. (2011). Detection and estimation of mixed paddy rice cropping patterns with MODIS data. International Journal of Applied Earth Observation and Geoinformation, 13(1), 13–23. https://doi.org/10.1016/j.jag.2010.06.001

Qiu, B., Lu, D., Tang, Z., Chen, C., & Zou, F. (2017). Automatic and adaptive paddy rice mapping using Landsat images: Case study in Songnen Plain in Northeast China. Science of the Total Environment, 598, 581–592. https://doi.org/10.1016/j.scitotenv.2017.03.221

Salmon, J. M., Friedl, M. A., Frolking, S., Wisser, D., & Douglas, E. M. (2015). Global rain-fed, irrigated, and paddy croplands: A new high resolution map derived from remote sensing, crop inventories and climate data. International Journal of Applied Earth Observation and Geoinformation, 38, 321–334. https://doi.org/10.1016/j.jag.2015.01.014

Setiawan, Y., Liyantono, Fatikhunnada, A., Permatasari, P. A., & Aulia, M. R. (2015). Dynamics pattern analysis of paddy fields in Indonesia for developing a near real-time monitoring system using modis satellite images. ACRS 2015 - 36th Asian Conference on Remote Sensing: Fostering Resilient Growth in Asia, Proceedings, 33, 108–116. https://doi.org/10.1016/j.proenv.2016.03.062

Son, N. T., Chen, C. F., Chen, C. R., Minh, V. Q., & Trung, N. H. (2014). A comparative analysis of multitemporal MODIS EVI and NDVI data for large-scale rice yield estimation. Agricultural and Forest Meteorology, 197, 52–64. https://doi.org/10.1016/j.agrformet.2014.06.007

Thome, K., & Wolfe, R. (2016). Terra Status Update Including End of Mission Orbit. Retrieved from https://modis.gsfc.nasa.gov/sci_team/meetings/201606/presentations/plenary/wolfe.pdf%0A

Wang, D., Morton, D., Masek, J., Wu, A., Nagol, J., Xiong, X., … Wolfe, R. (2012). Impact of sensor degradation on the MODIS NDVI time series. Remote Sensing of Environment, 119, 55–61. https://doi.org/10.1016/j.rse.2011.12.001

Zhou, Y., Xiao, X., Qin, Y., Dong, J., Zhang, G., Kou, W., … Li, X. (2016). Mapping paddy rice planting area in rice-wetland coexistent areas through analysis of Landsat 8 OLI and MODIS images. International Journal of Applied Earth Observation and Geoinformation, 46, 1–12. https://doi.org/10.1016/j.jag.2015.11.001

Refbacks

  • There are currently no refbacks.