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ABSTRACT 

Pacific Decadal Oscillation (PDO) is long-lived El Niño-like pattern 
of Pacific climate variability generated by coupled ocean-atmosphere 
interaction in the Northern Pacific Ocean. The best way to acquire a 
signal of PDO evidence is by determining the index of PDO. In this 
study, the PDO indexes are accurately modeled with time series 
methods through exponential smoothing analysis (Single and Holts 
Double exponential smoothing model) and Box-Jenkins analysis (ARIMA 
{1,1,1}, {2,1,1}. {3,1,1} and {4,1,1}). Nicholas’s PDO Model (ARMA 9, 7) is 
also considered as comparative model in order to obtain the level of the 
reliability models that have been produced. The best selected prediction 
model that close to the real PDO index is ARIMA (2,1,1) Zt = 1.574* Zt-1 -
0.427* Zt-2 -0.147* Zt-3 -0.976* at-1 which means the forecast of PDO in 
the future depending on three months earlier data and a month earlier 
error of PDO index. Mean absolute error (MAE) of this model is 0.5283 
and with root mean square error (RMSE) 0.6661. The predicted and 
observed PDO indexes are significantly correlated with r =0.76. 
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ABSTRAK 

Decadal Pacific Oscillation (PDO) adalah variabilitas iklim Pasifik 
yang menyerupai pola hidup El-Nino jangka panjang yang dibangkitkan 
oleh interaksi laut-atmosfer di bagian utara Samudra Pasifik. Cara 
terbaik untuk mendeteksi  PDO adalah dengan cara menentukan 
indeks PDO. Pada kajian ini, indeks PDO dimodelkan secara akurat 
melalui penerapan metode runtun waktu dalam analisis pemulusan 
eksponensial (Single dan Holts Double Exponential Smoothing Model) dan 
analisis Box-Jenkins (ARIMA {1,1,1}, {2,1,1} {3., 1,1} dan {4,1,1}). Model 
PDO Nicholas (ARMA 9, 7) juga digunakan sebagai pembanding untuk 
melihat tingkat keandalan model yang telah dibuat. Hasil model 
prediksi terbaik yang mendekati nilai aktual indeks PDO adalah ARIMA 
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(2,1,1) = Zt = 1.574* Zt-1 -0.427* Zt-2 -0.147* Zt-3 -0.976* at-1 bahwa 
untuk memprediksi nilai PDO di masa yang akan datang tergantung 
pada data indeks PDO tiga bulan sebelumnya dan error satu bulan 
sebelumnya. Mean absolut error (MAE) dari model ini adalah 0,5283 dan 
dengan root mean square error (RMSE) 0,6661. Observasi dan model 
PDO memiliki korelasi yang signifikan pada r = 0,76. 

Kata kunci: PDO, Analisis Box-Jenkins, Analisis pemulusan eksponensial 

 
1 INTRODUCTION 

Pacific Decadal Oscillation (PDO) is one of the climate variability 
generated by coupled interaction between ocean and atmosphere, 
primarily occurs in the Northern hemisphere of Pacific Ocean. This 
phenomenon was discovered by fisheries scientist Steven Hare in the 
mid-1990’s, based on observations of Pacific fisheries cycles [Mantua 
N.J 1999]. He named it when he studied about salmon production 
pattern in the Northern Pacific Ocean [Mantua et al 1997]. PDO cycle is 
characterized by the presence of warm and cool surface waters in the 
Pacific Ocean and the regimes shift from warm (positive phase) to cool 
(negative phase) in decadal time scale [Mantua and Hare 2002]. The cool 
period, for instance, is actually associated with extremely high sea 
surface temperatures in the Northern Pacific and the warm period is 
reversed (Figure 1-1). 

 
Figure 1-1:Sea Level Pressure (contours) and surface windstress (arrows) 

anomaly patterns during warm and cool phases of PDO 
[http://jisao.washington.edu/pdo] 

 
PDO is almost similar to the El-Nino Southern Oscillation (ENSO) 

and some call as long-lived El-Nino-like pattern of pacific climate 
variability because both  of these ‘event’s occur in the Pacific Ocean and 
highly detected in the variability of Pacific Ocean SST, but some 
scientists argue that based on collective body of research, there are 
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three main characteristics distinguishing PDO from ENSO [Mantua et al 
1997]: first, Period of oscillation, PDO has shifts phase on at least in 
inter-decadal time scale, persisted about 20 to 30 years. While ENSO is 
commonly known as inter-annual climate variability, persisted for 6 to 
18 months in this region; second, visibility of climatic fingerprints of the 
PDO; and the third the mechanisms causing PDO variability were not 
known well, while causes for ENSO variability were relatively well-
understood [Zhang et al. 1997, Mantua et al. 1997, NRC 1998]. 

The best way to acquire a signal of PDO event is by determining 
the index of PDO which is defined as the leading principal component of 
North Pacific monthly sea surface temperature variability from an un-
rotated empirical orthogonal function analysis [http://jisao.washington. 
edu/pdo/]. The index is measured poleward of 20 degrees north latitude 
and very useful to describe the climate variation attributed to the Pacific 
Decadal Oscillation [Mantua et al 1997, Zhang et al 1997]. The most 
commonly PDO index is developed by Mantua [ftp://ftp.atmos.washington. 
edu/mantua/], but there are other PDO indexes developed from outside 
North America such as PDO index introduced by Evans et al [2000] and 
Linsley et al [2000] which are interesting because they substantiated a 
robust PDO to tropical and southern hemisphere climate [Evan et al 
2000].  

The research that was conducted by Mantua and Hare 2002, 
assertively explained some impacts emerging by strengthening and 
weakening of PDO event. The existence of PDO event affects the surface 
climate anomaly in some regions, for example the warm phase of PDO 
coincide with anomalously dry period in eastern Australia, Korea, 
Japan, Interior Alaska and in a zonally elongated belt from Pacific 
Northwest to northern South America; warm PDO phases also tend to 
coincide with anomalously with wet periods in southwest US, Mexico, 
southeast Brazil, south central South America and western Australia; 
the PDO ‘event’ is also broadly affected temperature from northwestern 
North America to Northwestern Australia  [Mantua et al 2002, Willmott 
and Robeson 1995]. Mantua et al [2002] also noted that PDO ‘event’ has 
widespread impacts on natural system, including water resources in the 
Americas and many marine fisheries in North Pacific. In other words, 
the decadal variation of these shift phases of PDO ‘event’ has influenced 
the large-scale spatiotemporal patterns of large-scale wildfires occurrence 
in Northern American and also in the other areas geographically affected 
by this phenomenon [Nairn-Birch 2008]. A study of PDO which was) 
researched by Faqih et al [2008] showed that PDO and IPO are linked to 
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low-frequency of rainfall variability in the Indonesian-Australia region 
through regulating regional SST patterns (Figure 1-2). He indicated that 
there is a significant relationship between interdecadal SST anomaly 
and rainfall variability.  

 
Figure 1-2: The anomalies of seasonal rainfall climatology during different 

phases of interdecadal variability. All relative to 1901-2002 
climatology and rainfall climatology differences [Faqih et al., 
2008] 

 
According to above information, this needs to be considered to 

climatologists either to develop a prediction model of the PDO index or 
to know the probability of occurrence of a particular pattern of PDO 
variation. In this paper, one of methods to accomplish that needs is to 
apply the procedure consists of time series analysis and exponential 
smoothing analysis to existing monthly PDO time series data from 1900 
to 2010. This study describes various probability models for time series 
of PDO such as ARIMA, ARMA and exponential smoothing analysis, 
which are collectively called stochastic process. This stochastic process 
can be described as ‘a statistical phenomenon that evolves in time 
according to probabilistic law’. The goal of this research is to develop a 
prediction model of PDO that can be broadly used to analyze the effect 
of PDO event to the rainfall variability in Indonesia and other purposes 
regarding to the climate variability assessments. 
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2  DATA AND METHODS 

2.1 Data 

In this study, we only use PDO index data produced through the 
first principal component from an un-rotated empirical orthogonal 
function analysis. This data was acquired from the website of the Joint 
Institute for the Study of the Atmosphere and Ocean (JISAO) at the 
University of Washington (http://jisao.washington.edu/pdo/); the time 
series data begin in January of 1900 and end in December of 2010, 
totaling 1332 monthly observations. The data were divided into two 
groups: raw data from 1900-2007 which was used to build a prediction 
model of PDO and data from 2008-2010 for model verification.   

2.2 Methods 

The methods applied in this study are univariate analysis 
grouped into two main procedures namely the Exponential Smoothing 
Procedure and the Box-Jenkins Procedure. Box Jenkins model is 
developed from integrated of autoregressive model (AR) and moving 
average model (MA) or integrated of ARMA model for non-seasonal data 
of PDO index. Due to non-seasonal character of the data, first-order 
differencing is usually sufficient to analyze PDO model. The main stages 
in the setting up a Box-Jenkins forecasting are generally followed by 
four steps: first, model identification, to examine data to see which 
member of the class of ARIMA process appears to be most appropriate; 
second, estimation, to estimate the parameters of the chosen model; 
third, diagnostic checking, to examine the residual from the fitted 
model; and the last is to consider alternative model if necessary 
[Chatfield, 1989].    

3 MODEL 

Box-Jenkins model (ARIMA) is derived from general autoregressive 
integrated moving average process. In the time series analysis, we must 
understand how to decide the appropriate model for a time series data. 
The chosen model is generally determined by examining the APC and 
PACF curve or interpreting the correlogram (Table 3-1).  
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Table 3-1: IDENTIFICATION TIME SERIES MODEL OF AR (p), MA (q), 
AND ARMA (p, q) [Chatfield 1988, Evana, 2009] 

 AR (p) or ARIMA 
(1,0,0) 

MA (q) or ARIMA 
(0,0,1) 

ARMA (p,q) or 
ARIMA (1,0,1) 

ACF 

Dies Down 
(Decreasing 

exponentially or 
sinusoidally) 

Cuts-off after lag- 
q 

Decreasing 
exponentially 
after lag - p 

PACF Cuts-off after lag -
p 

Dies Down 
(Decreasing 

exponentially or 
sinusoidally) 

Decreasing 
exponentially 
after lag - q 

 
Suppose that {Zt} is a purely random process with mean zero and 

variance σ2z. Then {Xt} is a moving average process of order q (MA (q) 
process): 

qtZqtZtZotX −++−+= βββ ...11                                                                            (3-1) 

jtXtXjB −= ,  tZBtX )(θ=              (3-2) 

Where {βi} are constants, B is backward shift operator and θ (B) is 
a polynomial of order q in B. Now, suppose that {Zt} is a purely random 
process with mean zero and variance σ2z , then {Xt} is an autoregressive 
process of order p (AR (q) process): 

tZptZptZtZotX +−++−+= ααα ...11            (3-3) 

tZBfBtZtX )(1)1( =−−= α                                                                                          (3-4)                

Where ƒ(B) = (1-α1B- … - αpBp)-1, if we mix equation (3-2) and (3-
4), then we will find a new equation of mixed autoregressive/moving 
average process containing p AR terms and q MA  terms or its commonly 
called as ARMA process of order (p,q): 

qtZqtZtZptZptZtX −++−++−++−= ββαα ...11...11          (3-5) 

 
By using shift operator B, equation (3-5) can be written as: 

tZBtXB )()( θφ =               (3-6) 

Where,          

pBpBB ααφ −−−= ...11)(                                  (3-7) 

qBqBB ββθ −−+= ...11)(                                                                      (3-8) 
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If the ARMA is non-stationary, the solution to produce a 
stationary model is by summing or integrating the data to provide a 
model for non-stationary data: 

tXdBtXd
tW )1( −=∇=              (3-9) 

qtZqtZptWptWtX −+++−++−= βαα ......11         (3-10) 

tZBtWB )()( θφ =                       (3-11) 

tZBtXdBB )()1)(( θφ =−                     (3-12) 

Equations (3-9)-(3-12) are describing the dth differences of Xt or 
called as ARIMA process of order (p, d, and q). Differencing process 
introduced by Box and Jenkins (1970) is one of the methods for 
removing a trend in a given time series data until it becomes stationary. 

11 +∇=−+= tXtXtXtY                      (3-13) 

Or for second order differencing: 

122
2

+∇−+∇=+∇ tXtXtX            (3-14) 

To compare the above models, we use exponential analysis 
models which are Single and Holts Double exponential smoothing 
analysis, these methods can measure and remove a nonsymmetric trend 
or in other words these methods can be used if the data is not 
significantly influenced by seasonal factor. 

Data smoothing with single exponential smoothing requires a 
parameter called the smoothing constant (α). Each data point is given a 
certain weighting, α for the newest data, (1-α) for older data and etc. The 
value of α must be between 0 and 1. The following is the equation of 
smoothed value: 





 +−−+−−+= ...2

2)1(1)1( tYtYtYtX ααα                   (3-15) 

1)1(1 −−+−= tXtYtX αα                      (3-16) 

Where, α is the smoothing factor, and 0 < α < 1, Xt is output of 
the exponential smoothing algorithm and Y is raw data. Holts Double 
exponential smoothing method uses different parameters than the one 
used in original series to smooth the trend value. 

( )11)1( −+−−+= tTtXtYtX αα                                                                                 (3-17)  

( ) 1)1(1 −−−−= tTtXtXtT γγ                                                                                     (3-18) 

mtTtXmtY +=+
ˆ                                                                                                          (3-19) 
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Equation (3-17) calculates smoothing value Xt from the trend of the 
previous period Tt-1 added by the last smoothing value Xt-1. Equation (3-18) 
calculates trend value Tt from St, St-1, and Tt-1 and equation (3-19) 
(forward prediction) is obtained from trend, Tt, multiplied with the 
amount of next period forecasted, m, and added to basic value St. 

4 RESULT AND DISCUSSION 

4.1 Test for Stationary Time Series  

Stationary test needs to be done as a pre-processing process 
before building a model because the time series forecasting requires a 
condition that the data must be stationary. A set of data is called 
stationary if both of mean value and variance are constant in time. In 
other words, a stationary series contains no trend (systematic change in 
mean) and systematic change in variance, or strictly periodic variations. 
Non-stationary data must be modified to be stationary using a type of 
linear filter called differencing. 

Figure 4-1 shows a time plot of the monthly PDO index values 
from January 1900 through December 2007. An initial examination 
roughly shows any systematic increase or decrease in variance with 
time; the mean appears to remain constant over time. It indicates that 
the data is not stationary in variance, and transformations of the data 
are necessary. The proof of non-stationary data can be also examined 
through analysis of correlogram. 

 
Figure 4-1: Time series plot of monthly PDO Index values from January 

1900 to December 2007 
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Figure 4-2: Autocorrelation (ACF) and partial autocorrelation (PACF) of 

the raw PDO data with upper/lower confidence limits 
 

ACF curve decreases at the first lag and meanwhile the PACF 
curve is significantly cut-off at the first lag. It indicates that the data is 
not stationary in variance. To coerce the data to be stationary, the first 
order of differencing technique should be applied. After applying the first 
order difference, the variance value decreased from 1.044 to 0.537 and 
the standard deviation from 1.0218 to 0.7327, which mean(s) that the 
data is ready to produce reasonable forecast. The following table is a 
statistical description of raw data before differencing and after first order 
differencing applied. 

 
Figure 4-3: Time series plot of monthly PDO Index values from January 

1900 to December 2007 from first differencing technique 
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Figure 4-4: Autocorrelation (ACF) and partial autocorrelation (PACF) 

from first differencing technique 
 

After differencing process, we found that the time series data has 
been stationary because there is no sign that the ACF curve is dumping 
out and the PACF is cut-off at the first lag. So, next we try to identify the 
best model by combining the p, d, and q order in ARIMA models. 
 
Table 4-1: DESCRIPTIVE STATISTICS OF PDO INDEX BEFORE AND 

AFTER FIRST DIFFERENCE 

Variable PDO 
Index 

First Order 
Difference  

of PDO Index 

N 1296 1295 

Mean 0.0511 -0.0005 

Std. Error of 
 

0.02838 0.02036 

Std. Deviation 1.02175 0.73272 

Variance 1.044 0.537 

Minimum -3.60 -2.23 

Maximum 3.61 2.62 

 
4.2 Model Identification  

The chosen significant coefficients decide whether the 
autocorrelation coefficients is significantly different from zero or its 
modulus exceeds from 2/√N, where N is n-observations. According to 
ACF curve, the critical value is 0.06 and the significant coefficient is 
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only at lag 1 (Figure 4-2). Moreover, the significant coefficient in the 
PACF curve whose moduli exceed 0.06 is at lag 1, 2, 3, and 4. (Figure 4-
4). Thus, to identify an appropriate ARIMA model to forecast of PDO 
index, we should asses the combination of non-seasonal values of p, q 
and d in the model. The values of p and q are assessed by looking at the 
first few values of the significant coefficients of ACF and PACF. In this 
case, we have p=1, 2, 3, and 4, d=1 (∇Xt) and q=1. To avoid the 
subjectivity of the model, we prefer to combine the model index to be 
some ARIMA model equations (Table 4-2) and then in the diagnostic 
checking step, we will decide which one of the models that performance 
the lowest of average error.  
 
Table 4-2: EQUATIONS OF SELECTED ARIMA MODELS d=1 (∇Xt) WITH 

SOME COMPARATIVES MODELS 

ARIMA (p,d,q) 
Model Model Equations 

ARIMA (1,1,1) Xt=1.607*Z t-1-0.607*Z t-2-0.935*at-1 
ARIMA (2,1,1) Xt= 1.574* Z t-1-0.427* Z t-2-0.147* Z t-3-0.976* at-1 

ARIMA (3,1,1) Xt =1.572* Z t-1-0.408* Z t-2-0.13* Z t-3-0.034* Z t-4-0.979* 
at-1 

ARIMA (4,1,1) Xt =1.572* Z t-1-0.397* Z t-2-0.127* Z t-3-0.018* Z t-4-0.03* 
Z t-5-0.981* at-1 

Nicholas ARMA 
(9.7) 

Xt =0.794* Z t-1-0.366* Z t-2+0.44* Z t-3-0.346* Z t-4+0.361* 
Z t-5-0.371* Z t-6+0.99* Z t-7-0.516* Z t-8-0.054* Z t-9-0.202* 
at-1+0.371* at-2-0.207* at3+0.271* at-4-0.163* at-5+0.25* at-

6-0.808* at-7 

Single Exp. 
Smoothing Model Xt=α*Y t-1+(1-α)*X t-1 with α =0.602 

Holts Double Exp 
Smoothing Model 

Xt=0.551* Y t-1+0.449*( Xt +Tt-1),  and Tt=1.68.10-5 *(Xt- Xt-

1)*0.99 Tt-1 
Ft= Xt-1+ Tt-1, with α=0.551 and γ=1.68.10-5 

 

 
4.3 Diagnostic Checking 

In this stage, we should check the diagnostic statistics to see 
which of ARIMA (p, d, and q) model is adequate. Other comparative 
models are included in this diagnostic checking such as high-order 
mixed ARMA (9, 7) model and either single or double exponential 
smoothing model. The checking of the model will be examined through 
assessment of Mean Absolute Error (MAE), Correlation (r) and Root 
Mean Square Error (RMSE) to each of models. 
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The MAE measures the average magnitude of the errors in a set 
of PDO forecasts, without considering their direction. It measures 
accuracy for continuous PDO variables, or simply, it is the average over 
the verification sample of the absolute PDO values of the differences 
between forecast and the corresponding observation. While, RMSE is a 
quadratic scoring rule which measures the average magnitude of the 
PDO forecast error. This value is very useful when large errors are 
particularly undesirable. The MAE and the RMSE can be used together 
to diagnose the variation in the errors in a set of forecasts. Both of these 
values describe the average of model-performance error. 

 
Table 4-3: MEAN ABSOLUTE ERROR (MAE), ROOT MEAN SQUARE ERROR 

(RMSE) AND CORRELATION (r) FOR SELECTED ARIMA 
MODELS AND COMPARATIVE MODELS 

MODEL MAE RMSE r 

ARIMA (1,1,1) 0.533038682 0.672549282 0.75 

ARIMA (2,1,1) 0.528363866 0.666179088 0.76 

ARIMA (3,1,1) 0.528522385 0.666638291 0.75 

ARIMA (4,1,1) 0.528536327 0.665655729 0.76 

ARMA (9.7)* 0.528536327 0.665655729 0.76 

Single Exponential Smoothing* 0.546579559 0.686730484 0.76 
Holts Double Exponential 

Smoothing* 0.548719451 0.687716433 0.75 
*Comparative models 
 

According to Table 4-3, all selected models have nearly the same 
predictive skill. Therefore, the determination of the best selected model 
is not only from the statistical performance but also based on the 
composition model which has the simplest form. The best selected 
model which has the smallest MAE and RMSE values is ARIMA (2,1,1). 
This model is only consisting of few parameters (more efficient) than the 
ARMA (9,7) model.  This model is constructed by three months earlier 
data and the previous error of PDO index, or in mathematical 
expressions can be written as Zt = 1.574* Zt-1 -0.427* Zt-2 -0.147* Zt-3 -
0.976* at-1. In this case, Zt is forward prediction of PDO’s index. MAE of 
this model is 0.5283 with RMSE 0.6661. Insignificantly difference 
between RMSE and MAE indicates that all the errors are in the same 
magnitude. Detail composition of ARIMA (2, 1, 1) model can be seen in 
the Table 4-4. 
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Table 4-4:PARAMETER OF ARIMA (2, 1, 1) MODEL 

 Estimate SE t Sig. 

ARIMA (2,1,1) 

Constant .000 .002 -.110 .912 

AR 
Lag 1 .574 .029 19.948 .000 
Lag 2 .147 .029 5.158 .000 

Difference 1    
MA Lag 1 .976 .008 129.613 .000 

 
 
 

 
Figure 4-5: Tests for residual normality 

 
Further analysis used to examine the skill of the model is by 

applying the residual test. Figure 4-5 shows that distribution of ARIMA 
(2,1,1) residual model is classical bell-shaped, symmetric histogram 
with most of the frequency counts bunched in the middle and with the 
counts dying off out in the tails. The mean of residual is nearly zero 
0.01. Then the recommended next step is to do a normal probability plot 
to confirm approximate normality as we did before. The normal 
probability plot produces an approximately straight line which means 
that the distribution of residual of the model meets normality 
assumption. From this diagnostic checking, we can conclude that the 
ARIMA (2, 1, 1) PDO Model is a good model for data forecasting. 

4.4 Forecasting of PDO Model 

The model diagnostics indicate that the ARIMA (2, 1, 1) model 
successfully captures the variation of the stationary series. Thus, 
forecasting the future values of an observed time series is only 
conducted by using the best selected PDO model. Calibration of the 
model was done by using PDO index started from 1900 to 2007 and the 
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PDO forecasting (verification of the model) was started from January 
2008 to December 2010 (Figure 4-6). Figure 4-6 roughly shows that both 
of best selected ARIMA models and comparative models simultaneously 
fit the observed PDO index data. But as we have done in diagnostic 
checking step, the best forecasting model is just selected by examining 
the lowest of MAE, RMSE, and the highest correlation of the good fitness 
of the model. The highest correlation of the model fitting is 76% 
produced by ARIMA (2, 1, 1), ARIMA (4, 1, 1) and single exponential 
model. 
 

 
 Figure 4-6: Calibration and Forecasting Models Based on PDO Index 

from an Un-rotated Empirical Orthogonal Function (EOF) 
Analysis of JISAO 

 
The decision of final model is based on capability of the model to 

minimize the error and has the simplest form. On this PDO research, it’s 
possible to decide that our reliable model to predict of PDO index is 
ARIMA (2, 1, 1). Performance of the model to determine forward PDO 
index (ability to resemble of PDO variation)  is by using three months 
earlier data and a month earlier error of PDO index (Figure 4-7) with 
76% of Pearson’s correlation. Because forecasts are conditional case 
about future based on specific assumption, so this model is not the end 
of PDO prediction model, the analysis should always be prepared and 
developed to modify them as necessary in the light of any external or 
internal information is available.  
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Figure 4-7: Time series plot of validation and verification of PDO model 

(ARIMA (2, 1, 1)) and raw data 
 

Table 4-5: PREDICTED PDO INDEX FROM JULY 2009 TO JULY 2011 

Period Observed PDO Predicted PDO Error 
Jul-09 -0.53 -0.41385 -0.11615 
Aug-09 0.09 -0.45913 0.549129 
Sep-09 0.52 -0.12241 0.64241 
Oct-09 0.27 0.230968 0.039032 
Nov-09 -0.4 0.151615 -0.55161 
Dec-09 0.08 -0.28295 0.362954 
Jan-10 0.83 -0.09721 0.927213 
Feb-10 0.82 0.4261 0.3939 
Mar-10 0.44 0.540064 -0.10006 
Apr-10 0.78 0.318072 0.461928 
May-10 0.62 0.468458 0.151542 
Jun-10 -0.22 0.430235 -0.65024 
Jul-10 -1.05 -0.09105 -0.95895 
Aug-10 -1.27 -0.71397 -0.55603 
Sep-10 -1.61 -0.9756 -0.6344 
Oct-10 -1.06 -1.21833 0.158326 
Nov-10 -0.82 -0.94881 0.128806 
Dec-10 -1.21 -0.7271 -0.4829 
Jan-11 -0.92 -0.92727 0.007274 
Feb-11 -0.83 -0.81797 -0.01203 
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Mar-11 -0.69 -0.72397 0.033968 
Apr-11 -0.42 -0.62956 0.209563 
May-11 -0.37 -0.44897 0.078973 
Jun-11 -0.69 -0.37869 -0.31131 
Jul-11 -1.86 -0.56249 -1.29751 

5 CONCLUSION 

The PDO models are accurately developed in the time domain 
analysis. The projection methods of time domain analysis help to 
interpret the variation and behavior of PDO series as being dependent 
on time, where the value of a current observation is determined by a 
regression on past values.  Time domain analysis used in this research 
is defining into exponential smoothing analysis (Single and Holts Double 
exponential smoothing model) and Box-Jenkins analysis. The best 
selected model developed in this research is ARIMA (2, 1, 1) or  Xt= 
1.574* Z t-1-0.427* Z t-2-0.147* Z t-3-0.976* at-1  which means that the 
prediction of the PDO index variation in the future is depending on three 
months earlier data and a month earlier error of PDO index. The 
reasons of this determination are based on statistical performance 
showed by the model through the best assessment of Mean Absolute 
Error (MAE), Correlation (r) and Root Mean Square Error (RMSE) to each 
of models. This model has capability to produce the reliable prediction 
with minimum MAE (0.5293) and RMSE (0.6663). The accuracy of the 
fitting model is 76%. In addition, the ARIMA (2, 1, 1) model only needs 
few parameters to predict the PDO index in the future than the ARIMA 
(9, 7) model. However, this model still has a weakness where the 
resulting error is still fluctuating and the accuracy of the predicted 
results is very dependent on the quality of the previous data (historical 
data). This model also has only a good skill to predict the data for the 
next few months and the quality is decreased when used to predict the 
PDO index for a long term. The authors highly recommend to use the 
others statistical methods (e.g. adding seasonal effect in the ARIMA 
model or multivariate methods) and dynamical methods as the 
comparative models in order to develop the PDO model with higher 
accuracy value. The authors expect that this paper can especially 
explain the implementation of Box Jenkins methods in the development 
of PDO model.  
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