USIA DAN KEGANDAAN OGLE-LMC 316/317 (THE AGE AND BINARITY OF OGLE-LMC 316/317)

Rhorom Priyatikanto

Abstract

Large Magellanic Cloud (LMC) is a home of thousands of star clusters with various ages and metallicities. This galaxy also becomes the ideal laboratory for understanding binary cluster population which is large in number. One of the binary cluster candidates within the galaxy is OGLE-LMC 316/317 which is located near the bar of LMC. The age of OGLE-LMC 317 had not been determined, while the age of OGLE-LMC 316 was doubted. Whereas, age is an important parameter in the study of system binarity. In this study, photometry data from Optical Gravitational Lensing Experiment (OGLE) was used to construct color magnitude diagram and to estimate the age of OGLE-LMC 316/317. The results were the estimated ages of OGLE-LMC 316 and OGLE-LMC 317 which were 63 and 160 million years respectively. Based on these results, OGLE-LMC 316/317 system which has projected separation of 5 pc can be considered as primordial and coeval binary star cluster.

 

ABSTRAK

 

Large Magellanic Cloud (LMC) merupakan rumah bagi ribuan gugus bintang dengan beragam usia dan metalisitas. Galaksi ini juga menjadi laboratorium ideal untuk memahami populasi gugus ganda yang melimpah jumlahnya. Salah satu kandidat gugus ganda di dalamnya adalah OGLE-LMC 316/317 yang terletak di dekat batang LMC. Usia OGLE-LMC 317 belum diketahui, sementara usia OGLE-LMC 316 masih disangsikan. Padahal usia adalah parameter penting untuk mempelajari kegandaan dari sistem ini. Pada studi ini, data fotometri Optical Gravitational Lensing Experiment (OGLE) digunakan untuk membangun diagram warna magnitudo dan memperkirakan usia OGLE-LMC 316/317. Hasilnya, OGLE-LMC 316 diperkirakan berusia 63 juta tahun sementara OGLE-LMC 317 setidaknya berusia 160 juta tahun. Berdasarkan hasil ini, sistem OGLE-LMC 316/317 yang memiliki jarak pisah di bidang langit sebesar 5 pc dapat dianggap sebagai gugus ganda primordial dan coeval.

Keywords

photometry; binary cluster; Large Magellanic Cloud; fotometri; gugus ganda

Full Text:

PDF

References

Baumgardt, H., G. Parmentier, P. Anders, and E. Grebel, 2013. The star cluster formation history of the LMC. Monthly Notices of the Royal Astronomical Society, 430, 676.

Bekki, K., M. A. Beasleym, D. A. Forbes, and W. J. Couch, 2004. Formation of star clusters in the Large Magellanic Cloud and Small Magellanic Cloud. I. Preliminary results on cluster formation from colliding gas clouds. The Astrophysical Journal, 602, 730.

Bhatia, R., 1990. Merger and disruption lifetimes of binary star clusters in the Large Magellanic Cloud. Publication of the Astronomical Society of Japan, 42, 757.

Bhatia, R. and D. Hatzidimitriou, 1988. Binary star cluster in the Large Magellanic Cloud. Monthly Notices of the Royal Astronomical Society, 230, 215.

Bica, E., C. Bonatto, C. Dutra, and J. Santos, Jr. 2008. A general catalogue of extended objects in the Magellanic System. Monthly Notices of the Royal Astronomical Society, 389, 678.

Bica, E., H. Schmitt, C. Dutra, and H. Oliveira, 1999. A revised and extended catalog of Magellanic system clusters, associations, and emission nebulae. II. The Large Magellanic Cloud. The Astronomical Journal, 117, 238.

Bressan, A., P. Marigo, L. Girardi, B. Salasnich, C. Dal Cero, S. Rubele, and A. Nanni, 2012. PARSEC, stellar tracks and isochrones with the PAdova and TRieste Stellar Evolution Code. Monthly Notices of the Royal Astronomical Society, 427, 127.

Brown, J. H., A. Burkert, and J. W. Truran, 1991. On the formation of globular clusters. I. Dynamical limits on globular cluster metallicities. The Astrophysical Journal, 376, 115.

Brown, J. H., A. Burkert, and J. W. Truran, 1995. On the formation of globular clusters. II. Early dynamical evolution. The Astrophysical Journal, 440, 666.

de Grijs, R., J. Wicker, and G. Bono, 2014. Clustering of local group distances, publication bias or correlated measurements? I. The Large Magellanic Cloud. The Astronomical Journal, 147, 122.

de la Fuente Marcos, R. and C. de la Fuente Marcos, 2009. Double or binary, on the multiplicity of open star clusters. Astronomy and Astrophysics, 500, L13.

de la Fuente Marcos, R. and C. de la Fuente Marcos, 2010. The evolution of primordial binary open star clusters, mergers, shredded secondaries, and separated twins. The Astrophysical Journal, 719, 104.

de Oliveira, M. R., C. M. Dutra, E. Bica, E. and E. H. Bica, 2000. Morphologies and ages of star cluster pairs and multiplets in the Small Magellanic Cloud. Astronomy and Astrophysics Supplement Series, 146, 57.

Dieball, A., H. Muller, and E. Grebel, 2002. A statistical study of binary and multiple clusters in the LMC. Astronomy and Astrophysics, 391, 547.

Elson, R. A. W., S. Fall, and K. C. Freeman, 1987. The structure of young star clusters in the Large Magellanic Cloud. The Astrophysical Journal, 323, 54.

Fujimoto, M. and Y. Kumai, 1997. Star clusters driven to form by strong collisions between gas clouds in high-velocity random motion. The Astronomical Journal, 113, 249.

Gardiner, L. T., T. Sawa, and M. Fujimoto, 1994. Numerical simulations of the Magellanic system - I. Orbits of the Magellanic Clouds and the global gas distribution. Monthly Notices of the Royal Astronomical Society, 266, 567.

Harris, J. and D. Zaritsky, 2009. The star formation history of the Large Magellanic Cloud. The Astronomical Journal, 138, 1243–1260.

Kroupa, P. 2001. On the variation of the initial mass function. Monthly Notices of the Royal Astronomical Society, 322, 231.

Kroupa, P. and C. M. Boily, 2002. On the mass function of star clusters. Monthly Notices of the Royal Astronomical Society, 336, 1188.

Piatti, A. and E. Bica, 2012. Washington photometry of candidate star clusters in the Small Magellanic Cloud. Monthly Notices of the Royal Astronomical Society, 425, 3085.

Piatti, A. E., R. Guandalini, V. D. Ivanov, S. Rubele, M. –R. L. Cioni, R. de Grijs, R. B. -Q. For, G. Clementini, V. Ripepi, P. Anders, and J. M. Oliveira, 2014. The VMC survey. XII. Star cluster candidates in the Large Magellanic Cloud. Astronomy and Astrophysics, 570, A74.

Pietrzynski, G. and A. Udalski, 2000a. The optical gravitational lensing experiment. Ages of about 600 star clusters from the LMC. Acta Astron. 50, 337.

Pietrzynski, G. and A. Udalski, 2000b. The optical gravitational lensing experiment. Multiple cluster candidates in the Large Magellanic Cloud. Acta Astron. 50, 355.

Pietrzynski, G., A. Udalski, M. Kubiak, M. Szymanski, P. WoÌzniak, and K. Zebrun, 1999. The optical gravitational lensing experiment. Catalog of star clusters from the Large Magellanic Cloud. Acta Astron. 49, 521.

Priyatikanto, R. and M. I. Arifyanto, 2015. The implementation of binned kernel density estimation to determine open clusters proper motions. Validation of the method. Astrophysics and Space Science, 355, 161.

Priyatikanto, R., M. B. N. Kouwenhoven, M. I. Arifyanto, H. R. T. Wulandari, and S. Siregar, 2016. The dynamical fate of binary star clusters in the Galactic tidal field. Monthly Notices of the Royal Astronomical Society, 457, 1339.

Subramaniam, A., U. Gorti, R. Sagar, and H. Bhatt, 1995. Probable binary open clusters in the galaxy. Astronomy and Astrophysics, 302, 86.

Szymanski, M. 2005. The optical gravitational lensing experiment. Internet access to the OGLE photometry data set, OGLE-II BVI maps and I-band data. Acta Astron. 55, 43.

Theis, C. 2002. Formation of Twin Clusters in a Galactic Tidal Field. In Geisler, D. P. Grebel, E. K. and Minniti, D. editors, Extragalactic Star Clusters, volume 207 of IAU Symposium, page 681.

Udalski, A., M. Kubiak, and M. Szymanski, 1997. Optical gravitational lensing experiment. OGLE-2 – The second phase of the OGLE project. Acta Astron. 47, 319.

Refbacks

  • There are currently no refbacks.