EFEK MEDAN MAGNET ANTAR-PLANET ARAH UTARA-SELATAN TERHADAP MEDAN DIPOL GEOMAGNET

L. Muhammad Musafar

Abstract

Ditinjau sebuah model analitik untuk membahas efek keberadaan medan magnet antar-planet pada daerah sekitar orbit bumi dimana medan magnet bumi ditinjau sebagai medan dengan konfigurasi dipol. Untuk memetakan medan dipol tanpa gangguan maupun dengan keberadaan medan magnet antar-planet telah diterapkan pendekatan menggunakan potensial Euler untuk merumuskan persamaan garis medan. Dalam makalah ini hanya ditinjau medan efek keberadaan komponen arah utara atau selatan medan magnet antar-planet terhadap medan dipol geomagnet. Keberadaan medan magnet antar-planet yang memiliki komponen arah utara meng-akibatkan terjadinya rekoneksi garis medan pada daerah kutub, sedangkan medan magnet antar-planet dengan komponen arah selatan mengakibatkan rekoneksi pada daerah siang dan malam di bidang ekuatorial. Peningkatan kekuatan medan magnet antar-planet secara umum mengakibatkan kompresi terhadap medan dipol geomagnet disertai oleh titik rekoneksi bergerak mendekati bumi. Hasil uji untuk kasus badai magnet yang terjadi pada bulan Juli, 2000 menunjukkan bahwa pada awal fase ekspansi badai magnet titik rekoneksi magnetik terjadi pada jarak 19.5RE. Selanjutnya selama fase ekspansi ketika kekuatan medan magnet mencapai nilai maksimum titik terdekat rekoneksi magnetik diukur dari pusat bumi pada jarak 8.05RE dan pada akhir badai magnet lokasi rekoneksi menjauhi dari bumi yaitu pada jarak 26.9RE.

Keywords

medan magnet antar-planet, medan dipol, potensial Euler, rekoneksi magnet

Full Text:

PDF

References

Borowsky, J.E., 2013, Physical-based solar wind driver functions for the magnetosphere: Combining the reconnection-coupled MHD generator with the viscous interaction, 118, 11, pp. 7119-7150.

Chen, S-H., G. Le, and M-C. Fok, 2015, Magnetospheric boundary perturbations on MHD and kinetic scales, Journal of Geophysical Research: Space Physics, 120, 1, pp. 113-137.

Du, A.M., B.T. Tsurutani, and W. Sun, 2011, Solar wind energy input during prolonged, intense north interplanetary magnetic fields: A new coupling function, Journal of Geophysical Re-search, 116, A12215.

Hapgood, M. A., 1992, Space physics coordinate transformation: A user guide, Planetary and Space Science, 40, 5, pp. 711-717.

Jackson, J. D., 1999, Classical Electrodynamics, Third Edition, John Wiley and Sons.

Kivelson, M. G., and Russell, C. T., 1995, Introduction to Space Physics, Cambridge University Press.

Li, W.H., et.al., 2008, Solar wind plasma entry into the magnetosphere under northward IMF conditions, Journal of Geophysical Reseach, 113, A4, 204.

Liu, W.W., 2012, Interaction of solar wind pressure with the magnetosphere: IMF modulation and cavity mode, Journal of Geophysical Research: Space Physics, 117, A8, A08-234.

Maggiolo, E., et.al., 2017, The delayed time response of geomagnetic activity to the solar wind, Journal of Geophysical Research: Space Physics, 122, 11, pp. 11109-11127.

McGregor, .L., M.K. Hudson, and W.J. Hughes, 2014, Modeling magnetospheric response to synthetic Alfven fluctuations in the solar wind: ULF wave fields in the magnetosphere, Journal of Geophysical Research, 119, pp. 8801-8812.

McIlwain, C. E., 1961, Coordinates for mapping the distribution of magnetically trapped particles, Journal of Geophysical Research, 66, 11, pp. 3681-3691.

McIlwain, C. E., 1966, Magnetic coor-dinates, in Radiation Trapped in the Earth's Magnetic Field, edited by B. M. McCormac, pp. 45, D. Reidel Publishing Co., Dordrecht, Holland.

Mead, G. D., 1964, Deformation of the geomagnetic field by the solar wind, Journal of Geophysical Research, 69, 7, pp. 1181-1195.

Mead, G. D., and D. H. Fairfield, 1975, A quantitative magnetospheric model derived from spacecraft magnetome-ter data, Journal of Geophysical Research, 80, 4, pp. 523-534.

Midgley, J. E., 1964, Perturbation of the geomagnetic field - A spherical harmonic expansion, Journal of Geophysi-cal Research, 69, 7, pp. 1197-1200.

Olson, W. P., and K. A. Pfitzer, 1974, A quantitative model of the magnetospheric magnetic field, Journal of Geo-physical Research, 79, 25, pp. 3739-3748.

Parks, G. K., 2004, Physics of Space Plasmas: An Introduction, Second Edition, Westview Press, Advanced Book Programs.

Price, L., et.al., 2017, Turbulence in three-dimensional simulations of magnetopause reconnection, Journal of Geophysical Research: Space Physics, 122, 11, pp. 11086-11099.

Roederer, J. G., 1969, Quantitative mo-dels of the magnetosphere, Review of Geophysics, 7, 1-2, pp. 77-96.

Shi, Y., C.C. Wu, and L.C. Lee, 1991, Magnetic field reconnection patterns at the dayside magnetopause: An MHD simulation study, Journal of Geophysical Research: Space Physics, 96, A10, pp. 17627-17650.

Song, P., et.al., 1999, A numerical study of solar wind-magnetosphere interaction for northward interplanetary magnetic field, Journal of Geophysical Research: Space Physics, 104, A12, pp. 28361-28378.

Tasnim, S., I.H. Cairns and M.S. Wheat-land, 2018, A generalized equatorial model for the accelerating solar wind, Journal of Geophysical Research: Space Physics, doi: 10.1002/ 2017JA024532

Walt, M., 2005, Introduction to Geomag-netically Trapped Radiation, Cambridge University Press.

Williams, D. J., and G. D. Mead, 1965, Nightside magnetospheric configuration as obtained from trapped electrons at 1100 kilometers, Journal of Geophysical Research, 70, 13, pp. 3017-3029.

Zhang, J., et.al., 2007, Source and inter-planetary sources of major geomagnetic storms (Dst ï‚£ 100 nT) during 1996-2005, Journal of Geophysical Research: Space Physics, 112, A10-102.

Refbacks

  • There are currently no refbacks.