Tiar Dani, M.Si


Space weather disturbances during solar minimum are more dominantly caused by the appearance of the coronal hole in the sun. In this paper, we developed tools called DeLuNa to detect and calculate the geo-effective corona hole area based on 19.3nm images from the Atmospheric Imaging Assembly instrument on Solar Dynamics Observatory (SDO/AIA193). The results from geoeffective coronal hole detection and measurement from 2016 - 2018 then used to conduct cross-correlation (cc) analysis and wavelet analysis with the solar wind speed and Dst index. We found that an increase in the area of the coronal hole will cause solar wind speed to increase at 3.17 days later (cc = 0.65). Increasing the area of the coronal hole will also cause Dst index to decrease at 3.58 days later (cc = -0.35). While the decrease in the Dst index will only take 2 hours since the increased of the solar wind speed (cc = -0.59). Wavelet analysis short-term periodicities, i.e. 27, 13.5 and 7-9 days. The observed periodicities show that changes in solar wind speed and geomagnetic storm during minimum solar activity are more dominant caused by the geoeffective coronal hole total area.


coronal hole area; solar wind speed; Dst index; cross-correlation; wavelet analysis

Full Text:



Abramenko, V., Yurchyshyn, V., Watanabe, H., 2009. Parameters of the magnetic flux inside coronal holes. Sol Phys 260:43–57. doi: 10.1007/s11207-009-9433-7

Bravo, S., Cruz-Abeyro, J.A.L., Rojas, D., 1998. The spatial relationship between active regions and coronal holes and the occurrence of intense geomagnetic storms throughout the solar activity cycle. Ann Geophys 16:49–54. doi: 10.1007/s00585-997-0049-7

Davis, J.C., 1986. Statistics & data analysis im Geology. John Wiley & Sons Inc, New York, pp 238–239

Freedman, R.A., and Kaufmann, W.J., 2008. III. Our Star, the Sun. In: 8th Editio. W. H. Freeman, New York, pp 419–420

Hammer, Ø., Harper, D.A.T., Ryan, P.D., 1999. PAST: Paleontological Statistics Software Package. Palaeontol Electron 4:9. doi: 10.1016/j.bcp.2008.05.025

Heinemann, S.G., Temmer, M., Hofmeister, S.J., et al., 2018. Three-phase Evolution of a Coronal Hole. I. 360° Remote Sensing and In Situ Observations. Astrophys J 861:151. doi: 10.3847/1538-4357/aac897

Huang, G.H., Lin, C.H., Lee, L.C., 2017. Solar Open Flux Migration from Pole to Pole: Magnetic Field Reversal. Sci Rep 7:1–7. doi: 10.1038/s41598-017-09862-2

Katsavrias, C., Preka-Papadema, P., Moussas, X., 2012. Wavelet Analysis on Solar Wind Parameters and Geomagnetic Indices. Sol Phys 280:623–640. doi: 10.1007/s11207-012-0078-6

Krista, L.D., and Gallagher, P.T., 2009. Automated coronal hole detection using local intensity thresholding techniques. Sol Phys 256:87–100. doi: 10.1007/s11207-009-9357-2

Lemen, J.R., Title, A.M., Akin, D.J., et al., 2012. The Atmospheric Imaging Assembly (AIA) on the Solar Dynamics Observatory (SDO). Sol Dyn Obs 9781461436:17–40. doi: 10.1007/978-1-4614-3673-7_3

McComas, D.J., Bame, S.J., Barker, P.L., et al., 1999. An unusual coronal mass ejection: First Solar Wind Electron, Proton, Alpha Monitor (SWEPAM) results from the Advanced Composition Explorer. Geophys Res Lett 25:4289–4292. doi: 10.1029/1998GL900174

Mursula, K., and Zieger, B., 2004. The 13.5-day periodicity in the Sun, solar wind, and geomagnetic activity: The last three solar cycles. J Geophys Res Sp Phys 101:27077–27090. doi: 10.1029/96ja02470

Nolte, J.T., Krieger, A.S., Timothy, A.F., et al., 1976. Coronal holes as sources of solarwind. Sol Phys 46:303–322. doi: 10.1007/BF00149859

Nose, M., Iyemori, T., Sugiura, M., Kamei, T., 2015. Geomagnetic Dst index. World Data Cent Geomagn Kyoto. doi: doi:10.17593/14515-74000

Parker, E.N., 1958. Dynamics of The Interplanetary Gas and Magnetic Fields. Astrophys J 128:664–676

Pesnell, W.D., Thompson, B.J., Chamberlin, P.C., 2012. The Solar Dynamics Observatory (SDO). Sol Phys 275:3–15. doi: 10.1007/s11207-011-9841-3

Rotter, T., Veronig, A., Temmer, M., Vrsnak, B., 2014. Real-time solar wind forecasting based on coronal hole data. 16:2014. doi: 10.1007/s11207-015-0680-5

Rotter, T., Veronig, A.M., Temmer, M., Vršnak, B., 2012. Relation Between Coronal Hole Areas on the Sun and the Solar Wind Parameters at 1 AU. Sol Phys 281:793–813. doi: 10.1007/s11207-012-0101-y

SILSO, WDC., 2019. Spotless Days

Stone, E.C., Frandsen, A.M., Mewaldt, R.A., Space, G., 1998. The advanced composition explorer. Space Sci Rev 86:1–22. doi: 10.1023/A:1005082526237

Temmer, M., Vršnak, B., Veronig, A.M., 2007. Periodic appearance of coronal holes and the related variation of solar wind parameters. Sol Phys 241:371–383. doi: 10.1007/s11207-007-0336-1

Thompson, W.T., 2006. Coordinate systems for solar image data. Astron Astrophys 449:791–803. doi: 10.1051/0004-6361:20054262

Torrence, C., and Compo, G.P., 1998. A Practical Guide to Wavelet Analysis. Bull Am Meteorol Soc 79:61–78. doi: 10.1175/1520-0477(1998)079<0061:APGTWA>2.0.CO;2

Verbanac, G., Vršnak, B., Veronig, A., Temmer, M., 2010. Equatorial coronal holes, solar wind high-speed streams, and their geoeffectiveness. Astron Astrophys 526:A20. doi: 10.1051/0004-6361/201014617

Verma, V.K., 2001. On the periodicity of high speed solar wind streams. Space Sci Rev 97:205–210. doi: 10.1023/A:1011831707212

Vršnak, B., Temmer, M., Veronig, A.M., 2007. Coronal holes and solar wind high-speed streams: II. Forecasting the geomagnetic effects. Sol Phys 240:331–346. doi: 10.1007/s11207-007-0311-x


  • There are currently no refbacks.