Perubahan Temperatur setelah Letusan Pinatubo 1991 dari Luaran Model CMIP5 dengan Analisis Neraca Energi

Rahma Alfina Salsabila, Rusmawan Suwarman, Muhammad Rais Abdillah

Abstract

Letusan Pinatubo 1991 memberikan dampak signifikan terhadap anomali temperatur global pasca letusan yang terlihat, baik dari observasi maupun hasil luaran The fifth phase of the Coupled Model Intercomparison Project (CMIP5). Dalam penelitian ini kami mengkaji perubahan temperatur setelah letusan Pinatubo 1991 dengan analisis neraca energi yang difokuskan pada wilayah Benua Maritim dengan luaran model CMIP5. Variabilitas iklim tiga model CMIP5 dievaluasi dengan dataset observasi untuk menentukan model yang paling representatif. Perhitungan anomali saat kejadian letusan Pinatubo dilakukan pada model terpilih, dengan menghilangkan efek ENSO terlebih dahulu. Kemudian, analisis perubahan temperatur rata-rata wilayah dengan neraca energi permukaan pada tahun 1989 – 1993 menunjukkan bahwa terjadi penurunan temperatur yang berlangsung selama 24 bulan sampai akhir periode analisis setelah letusan terjadi. Nilai anomali negatif terbesar yaitu 0,37 °C. Berdasarkan pendekatan neraca energi dan radiasi, penurunan temperatur terlihat akibat anomali energi neto bernilai negatif, yang mencapai -2,93 W.m-2 pada satu tahun pasca letusan. Penurunan yang signifikan dari downwelling shortwave radiation, dengan nilai rata-rata anomali mencapai -3,70 W.m-2, berpengaruh besar pada nilai energi neto. Analisis lebih jauh menunjukkan bahwa penurunan ini lebih banyak disebabkan oleh naiknya reflected shortwave radiation at Top of Atmosphere daripada efek penyerapan radiasi oleh aerosol di atmosfer.

Keywords

letusan Pinatubo 1991; CMIP5; temperatur; neraca energi; Benua Maritim

Full Text:

PDF

References

Abdillah, M. R., Y. Kanno, & T. Iwasaki. 2018. Tropical-Extratropical Interaction Associated with East Asian Cold Air Outbreaks. Part II: Intraseasonal Variation, Journal of Climate, 31 (2), 473–490.

Aquila, V., L. D. Oman, R. S. Stolarski, P. R. Colarco, & P. A. Newman. 2012. Dispersion of the volcanic sulfate cloud from a Mount Pinatubo–like eruption, Journal of Geophysical Research, 117, D06216.

Barnes, E. A., S. Solomon, & L. M. Polvani. 2016. Robust Wind and Precipitation Responses to the Mount Pinatubo Eruption as Simulated in CMIP5 Models, Journal of Climate, 29 (13), 4763 – 4778.

Bentsen, M. et al. 2013. The Norwegian Earth System Model, NorESM1-M – Part 1: Description and basic evaluation of the physical climate, Geoscientific Model Development, 6 (3), 687-720.

Giorgetta, M. A. et al. 2013. Climate and carbon cycle changes from 1850 to 2100 in MPI-ESM simulations for the Coupled Model Intercomparison Project phase 5, Journal of Advances in Modeling Earth Systems, 5, 572-597.

Goosse, H., P.Y. Barriat, W. Lefebvre, M. F. Loutre, & V. Zuns. 2008-2010. Introduction to climate dynamics and climate modeling, diakses http://www.climate.be/textbook, 7 Juli 2020.

Guzman, E. M. d. 2005. Eruption of Mount Pinatubo in the Philippines in June 1991. Filipina: Laporan dari Asian Disaster Reduction Center.

Huang, B. et al. 2014. Extended Reconstructed Sea Surface Temperature version 4 (ERSST.v4): Part I. Upgrades and intercomparisons, Journal of Climate, 28 (3), 911-930.

[IPCC] Intergovernmental Panel on Climate Change. 2014. Climate Change 2014: Mitigation of Climate Change. Contribution of Working Group III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. USA: Cambridge University Press.

Kalnay, E. et al. 1996. The NCEP/NCAR 40-year reanalysis project, Bull. Amer. Meteor. Soc., 77, 437-470.

Kementrian energi dan Sumber Daya Mineral. 2008. Pengenalan Gunung Api, diakses https://www.esdm.go.id/assets/media/content/Pengenalan_Gunung_Api.pdf, 2 Februari 2020.

Langmann, B. 2014. On the Role of Climate Forcing by Volcanic Sulphate and Volcanic Ash, Advance in Meteorology, 2014, 17 p.

Liu, F. et al. 2016. Global Monsoon Precipitation Responses to Large Volcanic Eruptions, Nature Scientific Reports, 6: 24331.

Meyer, A. D. Folini, U. Lohmann, & T. Peter. 2016. Tropical Temperature and Precipitation Response to Large Volcanic Eruptions: Observation and AMIP5 Simulations, Journal of Climate, 29 (4), 1325 – 1338.

Newhall, C., J. W., H. II, & P. H. Stauffer. 2005. The Cataclysmic 1991 Eruption of Mount Pinatubo, Philippines. U.S. Geological Survey Facts Sheet 113-97. diakses https://pubs.usgs.gov/fs/1997/fs113-97/, 3 Februari 2020.

Rosenberg, Matt. 2019. The Mount Pinatubo Eruption in the Philippines diakses https://www.thoughtco.com/mount-pinatubo-eruption-1434951, 10 Desember 2019.

Siew, J. H., F. T. Tangang, & L. Juneng. 2014. Evaluation of CMIP5 Coupled Atmosphere-Ocean General Circulation Models over the Southeast Asian Winter Monsoon in the 20th Century, AIP Conference Proceeding. Selangor, 9 – 11 April 2014.

Stull, Rolland B. 1988. An Introduction Boundary Layer Meteorology. Dordrecht: Kluwer Academic Publisher.

Taylor, K. E. et al. 2009. A Summary of the CMIP5 experiment design. PCDMI Rep.. 4.

Voldoire, A. et al. 2013. The CNRM-CM5.1 global climate model: description and basic evaluation. Clim Dyn 40, 2091–2121.

Webster, P.J. & J. Fasullo. 2003. Monsoon: Dynamical Theory. Encyclopedia of Atmospheric Sciences. San Diego: Academic Press.

Wunderlich, F. dan D. M. Mitchel. 2017. Revisiting the observed surface climate response to large volcanic eruptions. Atmos. Chem. Phys., 17 (1), 485–499.

Zuo, M., W. Man, T. Zhou, & Z. Guo. 2018. Different Impacts of Northern, Tropical, and Southern Volcanic Eruptions on the Tropical Pacific SST in the Last Millenium. Journal of Climate, 31 (17), 6729 – 6744.

Refbacks

  • There are currently no refbacks.