Frekuensi Tumbukan Populasi Asteroid dekat-Bumi Berukuran Kecil dengan Planet-Planet Kebumian

Judhistira Aria Utama, Wahyudin - Wahyudin, Nanang Dwi Ardi, Taufiq - Hidayat, Lala Septem Riza

Abstract

Peristiwa papasan dekat antara populasi asteroid dekat-Bumi (ADB) dengan planet-planet kebumian sering kali terjadi dan menyebabkan orbit ADB mudah sekali berubah. Salah satu akibat dari perubahan orbit ini adalah terjadinya peristiwa tumbukan antara asteroid dengan planet-planet kebumian. Penelitian ini memanfaatkan 2387 sampel ADB nyata berukuran kecil (36 m <= D < 1 km, dalam rentang 17,90 < H < 24,97) dengan orbit yang telah dikenal sangat baik (U = 0), yang dibagi ke dalam 13 kelompok ukuran. Perhitungan orbit selama  tahun ke masa depan dilakukan dengan menggunakan paket integrator orbit Swift_RMVS4 hasil modifikasi sehingga dapat memperhitungkan gaya termal Yarkovsky. Langkah waktu perhitungan orbit dibuat sebesar 1/1000 tahun. Pada akhir komputasi orbit diperoleh fluks masuk sampel ADB ke zona pembuangan sebesar ~161 hingga ~335.330 asteroid per juta tahun. Probabilitas tumbukan intrinsik, Pi­, terkecil dimiliki oleh planet Mars, yaitu 7,42x10^-18  tahun-1 km-2 dan yang terbesar dimiliki oleh Bulan, yaitu 1,08x10^-16 tahun-1 km-2. Waktu antartumbukan paling singkat dimiliki oleh Bumi, dengan terjadinya satu tumbukan setiap 1374 tahun/1277 tahun yang melibatkan asteroid berdiameter D >= 36 m. Hal berlawanan berlaku untuk Mars, yang memiliki selang waktu antartumbukan terpanjang, yaitu 4709 tahun/4376 tahun. Survei terhadap populasi objek berdiameter dalam orde ratusan meter perlu dilakukan karena frekuensi tumbukan yang relatif lebih tinggi dengan potensi dampak kerusakan lokal hingga regional.

Keywords

Asteroid Dekat-Bumi, Laju Peluruhan, Frekuensi Tumbukan

Full Text:

PDF

References

Bottke, W. F., Morbidelli, A., Jedicke, R., Petit, J. M., Levison, H. F., Michel, P., & Metcalfe, T. S. (2002). Debiased orbital and absolute magnitude distribution of the near-Earth objects. Icarus, 156(2), 399-433.

Bottke, W. F., Vokrouhlický, D., & Nesvorný, D. (2007). An asteroid breakup 160 Myr ago as the probable source of the K/T impactor. Nature, 449(7158), 48-53.

Bottke Jr, W. F., Vokrouhlický, D., Rubincam, D. P., & Nesvorný, D. (2006). The Yarkovsky and YORP effects: Implications for asteroid dynamics. Annu. Rev. Earth Planet. Sci., 34, 157-191.

Brown, P. G., Assink, J. D., Astiz, L., Blaauw, R., Boslough, M. B., BoroviÄka, J., ... & Krzeminski, Z. (2013). A 500-kiloton airburst over Chelyabinsk and an enhanced hazard from small impactors. Nature, 503(7475), 238-241.

De La Fuente Marcos, C., & De La Fuente Marcos, R. (2020). On the orbital evolution of 2020 AV2, the first asteroid ever observed to go around the Sun inside the orbit of Venus. Monthly Notices of the Royal Astronomical Society: Letters, 494(1), L6-L10.

Dermawan, B., Hidayat, T., & Utama, J. A. (2013). Pengembangan integrator swift_rmvs4 dengan melibatkan efek termal. In Prosiding Seminar HAI (Himpunan Astronomi Indonesia) (Vol. 90, pp. 1-4).

Emel’yanenko, V. V., & Naroenkov, S. A. (2015). Dynamical features of hazardous near-Earth objects. Astrophysical Bulletin, 70(3), 342-348.

Fauziah, A. N. I., Utama, J. A., & Simatupang, F. M. (2020). Jarak Minimum Orbit dan Tumbukan Populasi Asteroid dekat-Bumi dengan Planet Bumi. Wahana Fisika, 5(1), 18-27.

Fowler, J. W., & Chillemi, J. R. (1992). IRAS asteroid data processing. The IRAS Minor Planet Survey, 17.

Galad, A. (2005). On intrinsic collision probability of subkilometer asteroids with the Earth. Contributions of the Astronomical Observatory Skalnate Pleso, 35, 65-75.

Galiazzo, M. A., Bazsó, Ã., & Dvorak, R. (2013). Fugitives from the Hungaria region: Close encounters and impacts with terrestrial planets. Planetary and Space Science, 84, 5-13.

Gladman, B., Michel, P., & Froeschlé, C. (2000). The near-Earth object population. Icarus, 146(1), 176-189.

Greenstreet, S., Ngo, H., & Gladman, B. (2012). The orbital distribution of near-Earth objects inside Earth’s orbit. Icarus, 217(1), 355-366.

Hamilton, D. P., & Burns, J. A. (1991). Orbital stability zones about asteroids. Icarus, 92(1), 118-131.

JeongAhn, Y., & Malhotra, R. (2015). The current impact flux on Mars and its seasonal variation. Icarus, 262, 140-153.

JeongAhn, Y., & Malhotra, R. (2017). Simplified derivation of the collision probability of two objects in independent Keplerian orbits. The Astronomical Journal, 153(5), 235.

Levison, H. F., & Duncan, M. J. (1994). The long-term dynamical behavior of short-period comets. Icarus, 108(1), 18-36.

Minton, D. A., & Malhotra, R. (2010). Dynamical erosion of the asteroid belt and implications for large impacts in the inner Solar System. Icarus, 207(2), 744-757.

Morbidelli, A., Delbo, M., Granvik, M., Bottke, W. F., Jedicke, R., Bolin, B., ... & Vokrouhlicky, D. (2020). Debiased albedo distribution for Near Earth Objects. Icarus, 340, 113631.

Morbidelli, A., Bottke, W. F., Froeschlé, C., & Michel, P. (2002). Origin and evolution of near-Earth objects. Asteroids III, 409.

Napier, B., & Asher, D. (2009). The Tunguska impact event and beyond. Astronomy & Geophysics, 50(1), 1-18.

Nesvorný, D., & Roig, F. (2017). Dynamical origin and terrestrial impact flux of large near-Earth asteroids. The Astronomical Journal, 155(1), 42.

Rickman, H., Wiśniowski, T., Wajer, P., Gabryszewski, R., & Valsecchi, G. B. (2014). Monte Carlo methods to calculate impact probabilities. Astronomy & Astrophysics, 569, A47.

Rickman, H., Wiśniowski, T., Gabryszewski, R., Wajer, P., Wójcikowski, K., Szutowicz, S., ... & Morbidelli, A. (2017). Cometary impact rates on the Moon and planets during the late heavy bombardment. Astronomy & Astrophysics, 598, A67.

Sanchez, J. P., & McInnes, C. (2011). Asteroid resource map for near-Earth space. Journal of Spacecraft and Rockets, 48(1), 153-165.

Stuart, J. S. (2003). Observational constraints on the number, albedos, size, and impact hazards of the near-Earth asteroids (Doctoral dissertation, Massachusetts Institute of Technology).

Stuart, J. S., & Binzel, R. P. (2004). Bias-corrected population, size distribution, and impact hazard for the near-Earth objects. Icarus, 170(2), 295-31.

Tricarico, P. (2017). The near-Earth asteroid population from two decades of observations. Icarus, 284, 416-423.

Wahyudin, Utama, J. A., & Rusdiana, D. (2020). Frekuensi Tumbukan Populasi Asteroid dekat-Bumi Berukuran Kecil terhadap Planet-Planet Kebumian. In Seminar Nasional Fisika (Vol. 1, No. 1, pp. 275-280).

Wisdom, J., & Holman, M. (1991). Symplectic maps for the n-body problem. The Astronomical Journal, 102, 1528-1538.

Wiśniowski, T., & Rickman, H. (2013). Fast geometric method for calculating accurate minimum orbit intersection distances. Acta Astronomica, 63(2), 293-307.

Refbacks

  • There are currently no refbacks.