
In-Orbit Implementation.. (Muhammad Taufik,.et.al)
	

	 11	

IN-ORBIT IMPLEMENTATION OF ERROR PATCHING METHODS FOR
LAPAN-A3/IPB OBDH FIRMWARE SYSTEM	

(IMPLEMENTASI METODE PENAMBALAN KESALAHAN DIORBIT
PADA SISTEM PERANGKAT LUNAK OBDH SATELIT LAPAN-A3-IPB)

Muhammad Taufik1, Wahyudi Hasbi2, Abdul Karim3

1,2,3Pusat Teknologi Satelit
Lembaga Penerbangan dan Antariksa Nasional (LAPAN)

Jl. Cagak Satelit km. 0,4 Rancabungur, Bogor 16310
1e-mail: muhammad.taufik@lapan.go.id

Diterima: 7 September 2018; Direvisi : 7 Februari 2019; Disetujui : 5 Maret 2019

ABSTRACT

OBDH (On-board data handling) is a satellite subsystem that receives, processes, decides and

executes commands from and to satellites. OBDH is built on two systems namely hardware and

software integrated system (firmware system). In terms of hardware, OBDH uses a processor with

32bit RISC architecture, 128/256 Kbyte internal memory and a firmware system that is built using

primitive programming. This programming uses the super loop architecture program and interrupt to

manage the system to function properly. Problems occur when an error occurs in one of the functions

in the interrupt routine resulting in failure of interpretation of commands or data from satellite

sensors. This paper describes the implementation of the error patching methods on the LAPAN-A3/IPB

Satellite OBDH firmware system in order to keep the system working well. Initial verification through

testing on the ground have been successfully performed using engineering model of OBDH and

hardware in the loop simulators (HWIL) module. Based on the test results, implementation on satellite

has also been successfully done.

Keywords: error patching methods, OBDH, LAPAN-A3/IPB Satellites

ABSTRAK

OBDH (On-board data handling) merupakan salah satu subsistem satelit yang berfungsi

menerima, mengolah, mengambil keputusan dan mengeksekusi perintah dari dan ke satelit. OBDH

dibangun berdasarkan dua buah sistem yaitu sistem perangkat keras dan perangkat lunak yang

terintegrasi (sistem firmware). Dari sisi perangkat keras, OBDH menggunakan prosesor dengan

arsitektur 32bit RISC, 128/256 Kbyte memori internal, dan sistem firmware yang dibangun

menggunakan pemrograman primitif. Pemrograman ini menggunakan arsitektur program super loop

dan interrupt untuk mengelola sistem agar dapat berfungsi dengan baik. Permasalahan terjadi ketika

terjadi kesalahan pada salah satu fungsi pada rutin interrupt sehingga mengakibatkan kegagalan

interpretasi perintah atau data dari sensor satelit. Paper ini menjelaskan mengenai implementasi

metode penambalan kesalahan pada sistem firmware OBDH satelit LAPAN-A3/IPB yang bertujuan

untuk menjaga agar sistem tetap bekerja dengan baik. Verifikasi awal melalui pengujian telah

berhasil dilakukan mengunakan engineering model OBDH dan modul hardware in the loop simulators

(HWIL). Berdasarkan hasil pengujian, implementasi pada satelit juga telah sukses dilakukan.

Kata kunci: metode penambalan kesalahan, OBDH, Satelit LAPAN-A3/IPB

	Jurnal Teknologi Dirgantara Vol.17 No.1 Juni 2019 : hal 11 - 18
	

	12	

1 INTRODUCTION
LAPAN-A3 is the third-generation

experimental satellite LAPAN after the
LAPAN-A2/Orari and LAPAN-Tubsat
satellites. This satellite has various
missions including earth observation
using 4 band line scanners and digital
cameras, monitoring ships with AIS
content and the scientific mission using
a magnetometer (Hasbi & Suhermanto,
2013). LAPAN-A3 is equipped with PCDH
(Power Control and Data Handling).
PCDH is a satellite subsystem that
combines functions to control power
(Power Control Unit) and handling data
from and to other subsystems (On-Board
Data Handling Unit). OBDH has the
function to receive, manage, make
decisions and execute commands from
and to the ground station as well as
from the satellite subsystem.

Compared with the previous
LAPAN satellites, OBDH LAPAN-A3 has
many enhancements from the satellite
bus side, including OBDH. At LAPAN-
Tubsat, OBDH uses a 32bit RISC
processor, 4/16 kByte internal memory
with some limitations on the system
firmware (Hardhienata & Triharjanto,
2007). While at LAPAN-A2/Orari, in
terms of hardware and system firmware
OBDH is not much different from the
LAPAN-A3/IPB satellite with several
different functions on the command to
satellite (Hasbi, & Karim, 2013). OBDH
LAPAN-A3/IPB uses a 32bit RISC
processor with 128/256 Kbyte internal
memory, 1 Mbyte external static RAM,
and 1 MB external flash memory.
Optimization is also a lot done in terms
of software, the OBDH contains the
satellite operation system software
(Firmware System), which allows direct
control of all the functionalities via the
ground station as well as a highly
autonomous operation controlled by
time or event triggered tasks (Hasbi, et
al, 2016).

The system firmware is designed
and built using primitive programming.
This programming uses the superloop
programming architecture and interrupt
to manage the system to function
properly. Superloop or main loop is a
programming architecture that makes
the system to run programs repeatedly
and continuously, other tasks can be
implemented separately that are
triggered through an interrupt.

The OBDH LAPAN-A3 / IPB
firmware system consists of two parts,
namely the initial initialization of the
BIOS (including hardware and software),
the second is the main loop. The main
loop does only three things, i.e. reset the
watchdog counter, set the CPU to sleep
mode, check errors in the boot program
memory area, etc. Almost all functions
are triggered by interrupt routines, one
of them is ACS (Attitude control System)
control loop, basic typical execution
scheme of OBDH is shown in Figure 1.

Reset Watchdog timer
Set CPU to sleep mode
Check for errors,...etc

ACS Control Loop

Main Loop

Interrupt

Reset Watchdog timer
Set CPU to sleep mode
Check for errors,...etc

ACS Control Loop INTERRUPT!

INTERRUPT!

Figure 1: Basic typical execution scheme of

OBDH Firmware System

ACS control loop is a function

routine that functions to move the
satellite in accordance with the selected
satellite mode including manual mode,
automatic nadir mode, automatic target
mode, and others. Interpreting the value
of the sensor, processing the data and
moving the actuator is done in this
routine. Errors in routine functions can
cause data interpretation errors to
control imperfect satellite attitudes.

In-Orbit Implementation.. (Muhammad Taufik,.et.al)
	

	 13	

Error patching is one way to
maintain a device from a system failure
due to an error that appears (Hayden, et
al., 2012) (Kraft, 2011) (Trümper J,
2012). Some embedded system patching
and updating methods have been
successfully implemented (Ekman, &
Thane, 2007) (Calder, & Kutt, 2009)
(Savitha A, 2017) (Pingale P, 2016).

This paper describes the
implementation of the method of
patching the data interpreter function on
the OBDH (case study is using the ACS
control loop function) in order to
improve the performance and keep the
system working properly. The
implementation of the patching process
in the superloop architecture program is
quite challenging because this process is
performed when the satellite has been
operating and is in orbit. Error sending
commands to patch, delete, or
overwritten certain memory addresses
can cause OBDH malfunctions. Initial
verification through testing on the
ground have been successfully
performed using engineering model of
OBDH and hardware in the loop
simulators (HWIL). Based on the test
results, implementation on satellite has
also been successfully done.

2 METHODOLOGY

In general, an overview of the
OBDH LAPAN-A3 / IPB memory
allocation is shown in Figure 2-1.	

Almost two thirds of the memory
allocation in ROM is occupied by the
BIOS program, one third is left blank.
Whereas all data interpretation
functions, whether sensors or
commands, are placed on an external
flash. Each memory, whether internal or
external, shares access to the address
and data they have. The patching
process has several steps, as illustrated
in Figure 2-2.

1. Error Identification

2. Create Patch File
3. Target Patch Preparation
4. Patching Process
5. Target Patch Activation

CPU

ROM (128kByte) / RAM
(4kByte)

Ext.RAM
(1 MB)

Address and Data Bus
FLASH
(1 MB)

Figure 2-1: OBDH memory allocation

Error
Identification

Create Patch File

Create
Replacement

Functions

 Compiler

Target

Destination
Flash Sector

Target

Destination
Flash Sector

Patch File
Activation

	
	

Figure 2-2: Process of patching the OBDH
firmware system

2.1 Error Identification

In this step, identification and
determination of errors that occur in the
firmware system are accomplished. In
this paper, the error that will be
corrected is an error that comes from the
ACS control loop command
interpretation function.

2.2 Create Patch File

Code design, verification and
program code compilation which aims to
change the program code to the code
that corresponds to the target binary

	Jurnal Teknologi Dirgantara Vol.17 No.1 Juni 2019 : hal 11 - 18
	

	14	

file. The binary file is a patch file that
will be uploaded to OBDH.

The program code design and
compilation process are accomplished
using the Renesas-High Performance
Embedded Workshop (HEW) software.

2.3 Target Patch Preparation
 The next step is check and
deactivate the program functions that
will be replaced. All program functions
are stored at a specific address on the
internal flash memory, for this purpose
the process of checking and deactivating
the program function is to be replaced at
the function reference address. Delete
the memory area on the intended flash
address, to make space for new
functions that have been created
previously.

2.4 Patching Process
 The upload process can be done
in two ways, that is through commands
when the satellite through the LAPAN
Ground Station or can be done through
scheduling. In this paper the upload
process is done manually through
commands to the satellite to minimize
errors in the patch process. After the
upload process is done then the patch
file validation. At the function reference
address, set a pointer for the new
function that has been uploaded and
then restart the OBDH system. A system
restart is required to initialize all OBDH
hardware and software functions.

2.5 Target Patch Activation
 Check and verify again that the
program that was uploaded was
successfully executed by OBDH.
Verification and initial testing are done
on the ground using OBDH Model
engineering and HWIL as satellite
subsystem simulators.

3 RESULT AND DISCUSSION
3.1 On-Ground Testing

Before patching process is
implemented on a satellite, the
simulation and testing are done first on
the ground. The test was conducted at
the AIT (Assembly, Integration and Test)
Laboratory of the LAPAN Satellite
Technology Center. Testing
instrumentation using engineering
model of PCDH (EM PCDH) and HILS
modules. The HILS module functions as
a satellite subsystem simulator
especially for attitude sensors and
actuators including star sensors,
reaction wheels, etc. This module uses
data from each subsystem that has been
stored in its internal memory to be used
as feedback to EM PCDH and PCDH.
Communication line between EM PCDH,
HILS module, and PC using RS422
protocol. All action commands given by
EM PCDH will then be followed up by
the HILS module to produce a reaction.
All data processing and settings for each
module are done via a PC (Personal
Computer). Figure 3-1 shows the test
scheme on the ground.

Figure 3-1: On-Ground testing scheme

RWs	Data	

Star	Sensors	
Data	

Simulation	
Data	

HILS	
Modul

e	

EM	PCDH	

ACS	Control	
Loop	Routine	
Data	

HILS	
Module	
Data	

PC	

In-Orbit Implementation.. (Muhammad Taufik,.et.al)
	

	 15	

 The ACS Control Loop function is
related to several sensors and actuators
namely star sensor and reaction wheels
that are simulated using the HILS
module. The design and compilation of
patch files is done on the PC and then
uploaded and activated on the target.
Observations on satellite attitude data
generated by star sensors are carried out
before and after patch activation on the
target device. Table 3-1 shows the test
results after and before the patch file is
activated.
 The first ten data in table 3-1 are
the data from the quaternion obtained
before the patch is activated, and the
next ten data are then quaternion data
obtained after the patch is activated.
Table 3-1 shows that before the patch

file is activated the quaternion value on
the star sensor is the same for data
sampling and the reference time for each
sampling is the same which means that
the quaternion value cannot be renewed
due to a malfunction in the star sensor
data interpretation obtained from the
HILS module.

3.2 In-Orbit Implementation

Patch file implementation on
satellites is done when the satellite is
not in a specific operation mission,
aiming to reduce the risk of failure in the
system firmware. Observations were
made to compare satellite attitudes data
from star sensors before and after the
patch file was activated as shown in
table 3-2.

Tabel 3-1:	ON-GROUND TESTING RESULT BEFORE AND AFTER PATCH ACTIVATION

Star Sensor attitude data in
Quaternion format

Q1; Q2; Q3; Q4
Ref.

time [s]

0;0;1;0 0
0;0;1;0 0
0;0;1;0 0
0;0;1;0 0
0;0;1;0 0
0;0;1;0 0
0;0;1;0 0
0;0;1;0 0
0;0;1;0 0
0;0;1;0 0

-0.26571;0.64236;0.67296;0.25273 118.806
-0.26572;0.64226;0.67303;0.25280 118.814
-0.26577;0.64229;0.67300;0.25275 118.823
-0.26594;0.64246;0.67282;0.25263 118.832
-0.26559;0.64209;0.67322;0.25285 118.841
-0.26569;0.64206;0.67321;0.25865 118.849
-0.26582;0.64219;0.67307;0.25279 118.858
-0.26568;0.64206;0.67322;0.25285 118.866
-0.26568;0.64194;0.67335;0.25279 118.988
-0.26576;0.64228;0.67304;0.25268	 119.005

	Jurnal Teknologi Dirgantara Vol.17 No.1 Juni 2019 : hal 11 - 18
	

	16	

Tabel 3-2:	IN-ORBIT IMPLEMENTATION RESULT BEFORE AND AFTER PATCH ACTIVATION

Star Sensor attitude data in Quaternion

format

Q1; Q2; Q3; Q4
Ref. time [s]

-0.3257; -0.9447; -0.0142; 0.0332 32724
-0.3257; -0.9447; -0.0142; 0.0332 32724
-0.3257; -0.9447; -0.0142; 0.0332 32724
-0.3257; -0.9447; -0.0142; 0.0332 32724
-0.3257; -0.9447; -0.0142; 0.0332 32724
-0.3257; -0.9447; -0.0142; 0.0332 32724
-0.3257; -0.9447; -0.0142; 0.0332 32724
-0.3257; -0.9447; -0.0142; 0.0332 32724
-0.3257; -0.9447; -0.0142; 0.0332 32724
-0.3257; -0.9447; -0.0142; 0.0332 32724

-0.229001; -0.84204; -0.051492;0.48567 441383953
-0.2228986; -0.84197; -0.051523;0.485791 441384203
-0.228964; -0.841699; -0.051645;0.486263 441385203
-0.22915; -0.841455; -0.051613;0.486601 441385703
-0.229063; -0.841443; -0.051695;0.486654 441385953
-0.229071; -0.841257; -0.051738;0.486895 441386453
-0.228918; -0.841298; -0.051881;0.487169 441387203
-0.228955; -0.841173; -0.051956;0.48756 441387953
-0.229009; -0.840932; -0.051956;0.487715 441388203
-0.228867; -0.840827; -0.052115;0.487995 441388954

Same as in table 3-1, the first ten

data are the data from the quaternion
obtained before the patch is activated,
and the next ten data are then
quaternion data obtained after the patch
is activated. The default system firmware
on the OBDH before the patch file is
activated shows the same quaternion
value and reference for the star sensor.
After the patch is activated, changes
occur for each quaternion value and
reference time for each data sampling.

4 CONCLUSION

Testing result and
implementation in orbit indicate that the
patching method used is able to
overcome errors that occur in the ACS
control loop function on OBDH. This
method can also be used to update the
system firmware of OBDH. The use of
this method requires caution due to

errors in function changes, certain
memory deletions, and overwriting of
functions with other functions can cause
PCDH may have unpredictable
consequences and may result in a
malfunctioning device.

ACKNOWLEDGMENT

The authors would like to thank
Director of Satellite Technology Center
(LAPAN) Mr. Ir. Mujtahid, MT and all
members of LAPAN-A3/IPB AIT and
Ground Station team for their support
so that this research can be successfully
completed. Also a regards for redaction
team of Jurnal Teknologi Dirgantara
LAPAN.

REFERENCES
Hasbi W., & Suhermanto., 2013. Development

of LAPAN-A3/IPB Satellite an

Experimental Remote Sensing

In-Orbit Implementation.. (Muhammad Taufik,.et.al)
	

	 17	

Microsatellite 34th Asian Conf. Remote

Sens. 2013, ACRS 2013, p. 1508-1515.

Hardhienata S., & Triharjanto RH., 2007.

LAPAN-TUBSAT: From Concept to Early

Operation. Lembaga Penerbangan dan

Antariksa Nasional, 2007.

Hasbi W., & Karim A., 2013. Lapan-A2 System

Design for Equatorial Survaillance

Missions. In 9th International

Symposium of The International

Academy of Astronautics (IAA) Berlin,

(pp. 8-12).

Hasbi W., et al., 2016. LAPAN-A3/IPB

Microsatellite for Remote Sensing

Experiment Detail Design. Laporan

Teknis Kegitan Penelitian. Pusat

Teknologi Satelit. Bogor

Ekman M., & Thane H., 2007. Dynamic

patching of embedded software. In Real

Time and Embedded Technology and

Applications Symposium, IEEE. pp.

337-346

Calder A., & Kutt P., 2009. Flight Software

Design Guidelines for Enhancing On-

Orbit Maintenance. InAIAA Infotech@

Aerospace Conference and AIAA

Unmanned... Unlimited Conference. p.

1818

Hayden CM., Smith EK., Denchev M., Hicks M.,

Foster JS., 2012. Kitsune: Efficient,

general-purpose dynamic software

updating for C. InACM SIGPLAN., Vol.

47, No. 10, pp. 249-264.

Kraft J., Kienle HM., Nolte T., Crnkovic I.,

Hansson H., 2011. Software

maintenance research in the PROGRESS

project for predictable embedded

software systems. InSoftware

Maintenance and Reengineering

(CSMR), 2011 15th European

Conference on 2011 Mar 1 (pp. 335-

338). IEEE.

Savitha A., Chetwani RR., Bhanumathy YR.,

Ravindra M., 2017. Model based

system for software change analysis for

embedded systems on spacecraft.

InAdvance Computing Conference

(IACC) (pp. 418-422). IEEE.

Trümper J., Voigt S., Döllner J., 2012.

Maintenance of embedded systems:

Supporting program comprehension

using dynamic analysis. InSoftware

Engineering for Embedded Systems

(SEES), 2012 2nd International

Workshop (pp. 58-64). IEEE.

Pingale P., Amrutkar K., Kulkarni S., 2016.

Design aspects for upgrading firmware

of a resource constrained device in the

field. InRecent Trends in Electronics,

Information & Communication

Technology (RTEICT), IEEE

International Conference (pp. 903-907).

IEEE.

	Jurnal Teknologi Dirgantara Vol.17 No.1 Juni 2019 : hal 11 - 18
	

	18	

