
Stability And Controllability Analysis On... (Angga Septiana, et.al.) 
 

81 
 

STABILITY AND CONTROLLABILITY ANALYSIS ON LINEARIZED 
DYNAMIC SYSTEM EQUATION OF MOTION OF LSU 05-NG USING 

KALMAN RANK CONDITION METHOD 
 

Angga Septiyana1, Kurnia Hidayat, Ardian Rizaldi, Prasetyo Ardi Probo Suseno, Eries Bagita Jayanti, 
Novita Atmasari, M. Luthfi Ramadiansyah, Redha Akbar Ramadhan 

1Aeronautics Technology Center, LAPAN 
1e-mail: angga.septiyana@lapan.go.id 

Received: 13 March 2020; Revision: 5 May 2020 ; Accepted: 17 August 2020 

  
 

ABSTRACT  
 
This paper discusses the stability and controllability of the dynamic system of the 

LAPAN Surveillance UAV 05-NG (LSU 05-NG) aircraft equation. This analysis is important 
to determine the performance of aircraft when carrying out missions such as 
photography, surveillance, observation, and as a scientific platform to test 
communication-based on satellite. Before analyzing the dynamic system, first arranged 
equations of motion of the plane which include the force equation, moment equation, and 
kinematics equation. The equation of motion of the aircraft obtained by the equation of 
motion of the longitudinal and lateral dimensions. Each of these equations of motion will 
be linearized to obtain state-space conditions. In this state space, A, B, and C are linear 
matrices that will be obtained in the time domain. Stability analysis using eigenvalue 
method and controllability analysis using Kalman Rank Condition method. The results 
of the analysis of matrices A, B, and C show that the dynamic system in the LSU 05-NG 
motion equation is a stable system on the longitudinal dimension but the lateral 
dimension on the unstable spiral mode. As for the analysis of the control of both the 
longitudinal and lateral dimensions, the results show that the system is controlled. 
 
Keywords: stability, controllability, , Kalman rank condition, dynamical system.  
 
1 Introduction 
 The development of unmanned 
aircraft in various countries is quite 
significant and the unmanned aircraft is 
widely applied to the needs of a country. 
Currently UAV (Unmanned Aerial 
Vehicle) or Drone aircraft have been used 
in various applications such as military 
industry, commercial cargo 
transportation, and mapping (Parmar & 
Acharya, 2015). In Indonesia, the 
development of UAV technology is also 
developing rapidly and its application is 
not inferior to other countries. Therefore, 
as a government agency engaged in the 
world of aeronautics, Pusat Teknologi 

Penerbangan continues to conduct 
research and innovation. One focus of 
work carried out is the development or 
development of unmanned aircraft. Until 
now, there are several variants of UAV 
owned. From the smallest to the biggest. 
One of the drones developed was the 
LAPAN Surveillance UAV 05 Next 
Generation (LSU 05-NG) aircraft. 
 LAPAN Surveillance UAV 05 Next 
Generation (LSU-05 NG) is an unmanned 
aircraft capable of accommodating large 
loads (maximum 30 kg) that has missions 
for research, observation, patrol, 
surveillance, and SAR activities. The 
main mission of this aircraft is to support 
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aerial photography activities by carrying 
loads in the form of optical devices. In the 
future, this aircraft will also be used as a 
scientific platform to test the satellite-
based communication system developed 
by the LAPAN Pustekbang and can also 
be used for border surveillance (Rizaldi, 
2019) 

Before carrying out this mission, it 
is necessary to analyze the stability, 
control, and observability of the state 
space matrices. This simulation analysis 
is carried out to ensure that the LSU 05-
NG is stable and can be controlled 
properly when there is interference. 
Previous research on stability analysis on 
UAVs has been conducted by (Purwanto, 
2012). The analysis carried out is a 
dynamic stability analysis on the UAV. 
The results obtained that the UAV has 
dynamically stable properties in the 
longitudinal and lateral dimensions. In 
addition, an analysis of static stability 
has also been carried out by (Sugandi et 
al., 2018). The study was conducted on a 
UAV with a tandem model or commonly 
called a tandem wing UAV. Research 
related to stability is also widely carried 
out as conducted by (Boschetti & 
Cárdenas, 2012), (Boschetti et al., 2010) 
and (Cardenas et al., 2004). On the other 
hand, research about controllability and 
observability has been carried out. 
(Younus & Ur Rahman, 2014) conducted 
research on control and accuracy to 
obtain solutions from dynamic systems 
on voltera type nonlinear matrices. Also 
conducted by (Tian et al., 2019) research 
related to control and observation. 
Research conducted on a linear dynamic 
system on a multi-agent system. 
 In this study an analysis of the A, B, 
C, and D lines that have been linearized 
in the state space state. The purpose of 
this analysis is to find out the stability 
and controllability of the dynamic system 
that is formed from the equation of the 
linearized motion of the aircraft. 

2  Methodology 
2.1 Stability 

In designing an aircraft, the stability 
analysis is very important to know the 
aircraft's ability to carry out the mission 
and the aircraft's attitude when there is 
interference. Stability analysis on aircraft 
includes static and dynamic stability 
analysis. Static stability of an aircraft is 
generally the first type of stability 
evaluated by a designer. The static 
stability criteria for the three aircraft 
rotation modes (pitch, roll, and yaw) must 
be considered (Yechout, 2003). In 
addition, it needs to be evaluated for 
aircraft dynamic stability. The dynamic 
stability of the aircraft focuses on the 
time domain when the aircraft is moving 
and gets outside interference when in a 
state of balance or trim condition. An 
analysis of the aircraft's dynamic stability 
needs to be carried out to determine the 
aircraft's handling quality and features 
designed for the aircraft to run well or not 
when carrying out the mission. The basis 
for knowing this dynamic stability, the 
first thing to do is to arrange a plane 
motion differential equation or equation 
of motion (EOM). Then from the results of 
EOM compilation is carried out 
linearization and will get a matrices A, B, 
and C in the state space. The matrices 
will find the roots of their characteristics 
which will be used to determine stability. 

Theorem (1): Given a system of 
differential equations 

 
𝑥 = 𝐴𝑥 (2-1) 

 
where 𝐴 is matrices of size 𝑛×𝑛 and 

has an eigenvalue 𝜆', 𝜆) ⋯⋯ , 𝜆+ with 𝑖 ≤ 𝑛. 
The differential equation system is said to 
be stable at 𝑥 = 0 if and only if the 
characteristic roots of matrices 𝐴 in the 
real domain are negative or 𝑅0𝜆+ < 0. 
(George, 2015). 
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2.2 Controllability 
Given a system of linear differential 

equations in the time domain 
 

𝑥 𝑡 = 𝐴𝑥 𝑡 + 𝐵𝑢 𝑡 ,			𝑥 𝑡7 = 𝑥7 (2-2) 

𝑦 𝑡 = 𝐶𝑥 𝑡 + 𝐷𝑢(𝑡) (2-3) 
 
where matrices A, B, C dan D have size  

n×n, n×r,m×n,	dan n×r.  
 
Theorem (2) Kalman rank conditon:  

The differential equation system in Eq. (2-
2) dan (2-3) s said to be controlled at 
intervals 𝑡7, 𝑡'  if and only if the control 
matrices 

 
𝐵		𝐴𝐵	⋯	𝐴EF'𝐵  (2-4) 

 
with size 𝑛×𝑛𝑚 has rank as much 𝑛. 
(Davis et al., 2009) 
Theorem 2 shows that the system is said 
to be controllable output if with the 
unconstrained control vector 𝑢(𝑡)  
Theorem 2 shows that the system is said 
to be controllable output if with the 
unconstrained control vector 𝑥(𝑡7) to the 
condition 𝑥(𝑡') in interval 𝑡7 ≤ 𝑡 ≤ 𝑡'. 

Based on the understanding of 
Theorem 2-2 it is important to know that 
any initial and final state consisting of n 
components and if all components of the 
initial state can be controlled to n 
components that correspond to the final 
state, then the system can be controlled. 

Whereas with the existence of an 
unrestricted u (t) controller, nothing is 
required except to transfer just any initial 
state that is given to any desired final 
state at a finite time interval (Subiono, 
2013) 

 
2.3 Equation of Motion 

Airplanes can move on the X, Y, and 
Z axes. Airplane movements include 
rolling, pitching, and yawing. Rolling is a 
rolling motion made by aircraft on the 
longitudinal axis caused by the aileron 

control plane. Pitching is a nodding 
motion down and up on the lateral axis 
due to the elevator control plane. While 
yawing is a turning motion on the 
horizontal body caused by rudder 
control. LSU 05-NG has flaps for increase 
lift when taking off. In general, the 
anatomy of LSU 05-NG is given at Figure 
2 - 1. 

 
Figure 2-1: Anatomy of LSU 05-NG 

 
To get the equation of motion aircraft, 

used first-principle modelling (Adiprawita 
et al., 2008). This approach is used by 
involving the basic equations of 
mechanics and aerodynamics. This 
reduction involves a decrease in the force 
equation, the flight kinematics equation 
and the moment equation. 

 

 
Figure 2-1: Definition of force, 
moment and speed on airframe 
(Nelson, 1989) 

 
Based on Figure 2-2, the equation of 

force on the plane at coordinates 𝑋, 𝑌 and 
𝑍 is the sum of the forces that occur on 
the plane which include gravity, thrust, 
and aerodynamic forces (Luckner, 2007). 
Mathematically, the force equation can 
be written as follows 
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m(u + qw − rv) = 	−mg sin Θ
+ FUV + FWV 

(2-5) 

m v + ru − pw = mg sinΦ cos Θ
+ FU\ + FW\ 

(2-6) 

m w + pv − qu
= 	mg	 cosΦ cos Θ + FU] + FW] 

(2-7) 

The moment equation in the aerospace 
vehicle is often called the rotational 
equation and mathematically the 
moment equation can be written as 
follows (Ulu s & Ikbal, 2019) 

 
pIV + qr IV − I\ − pq + r IV]

= LU + LW 
 

(2-8) 

qI\ − pr I] − IV + p) − r) IV]
= MU + MW 

 

(2-9) 

rI] + pq I\ − IV + qr − p IV]
= NU + NW 

 

(2-10) 
 

To analyze an aircraft's dynamic 
response, rotational angle motion is used 
on an aircraft that is Φ Θ Ψ  which 
respectively states roll, pitch, and yaw 
(Ahmed et al., 2015). The relationship 
between angular velocity and rotation 
angle is expressed in the following 
mathematical form 

 
Φ = p + (q sinΦ + r	 cosΦ) tan Θ (2-11) 

Θ = q cosΦ − r sinΦ (2-12) 

Ψ = q	 sinΦ sec Θ + r cosΦ sec Θ (2-13) 
 
2.4 State Space Representations of the 

UAV Model 
In this section, the equation of 

motion in the longitudinal and lateral 
dimensions is obtained from Eq. (2-5) to 
(2-13). Then those equation is linearized. 
Those longitudinal and lateral equations 
are obtained in the state sapce. 
Equations in the form of state space are 

needed to develop the transfer function 
for each state variable and control input. 
For longitudinal equations in state space 
conditions are given as follows  

 
𝑢
𝑤
𝑞
𝜃

= 𝐴

𝑢
𝑤
𝑞
𝜃

+ 𝐵 𝛿0
𝛿j

 

 

 
(2-14) 

 

with 
 

𝐴  
 
= 

𝑋k
𝑍k
𝑀k
0

𝑋m
𝑍m
𝑀m
0

𝑋n
𝑍n
𝑀n
1

−𝑔 cos 𝜃
−𝑔 sin 𝜃

0
0

 

 
𝐵  

 
= 

𝑋q0
𝑍q0
𝑀q0
0

𝑋qj
0
0
0

 

The lateral motion equation on the 
plane involves the rolling moment, the 
yawing moment and the side force of the 
equation of motion. The lateral motion 
equation in the state space state is given 
as follows  (Akyazi et al., 2013) 

 
𝑣
𝑝
𝑟
𝜙

= 𝐴'

𝑣
𝑝
𝑟
𝜙

+ 𝐵'
𝛿v
𝛿w

 

 

 
(2-15) 

with  
 

𝐴'  
 
= 

𝑌x
𝐿x
𝑁x
0

𝑌{
𝐿{
𝑁{
0

𝑌w
𝐿w
𝑁w
1

−𝑔 cos 𝜃
0
0
0

 

 
𝐵  

 
= 

𝑌qv
𝐿qv
𝑁qv
0

𝑌qw
𝐿qw
𝑁qw
0

 

 
3 Result and Discussion 

Stability and control analysis is 
important to do to find out the flight 
performance of the aircraft when carrying 
out the mission. This analysis was 
carried out on the LSU 05-NG aircraft 
assuming when flying a cruise mission on 
a cruise with a speed of 30 m / s at an 
altitude of 1000ft. But before an analysis 
is carried out to obtain a dynamic system 
in the state of space, a simulation is 
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carried out to obtain aerodynamic 
stability derivatives. When conducting a 
simulation several variables to be 
considered as presented in  

Table 3-1: .   
 
Table 3-1: Variables that are considered 

during simulation 
 

Variable Value 
Density 1.222 𝑘𝑔/𝑚~ 
Viscosity 1.463e-05 𝑚)/𝑠 
CG on X direction 1.515 𝑚 
CG on Y direction 0.000 𝑚 
CG on Z direction 0.047 𝑚 
Inertia on X 
direction 

40.06 𝑘𝑔	𝑚) 

Inertia on Y 
direction 

63.58 𝑘𝑔	𝑚) 

Inertia on Z 
direction 

99.79 𝑘𝑔	𝑚) 

Inertia on XZ 
direction 

4.28 𝑘𝑔	𝑚) 

Mass of aircraft 76.77 𝑘𝑔 
 
The variables in Table 3-1 are entered 

into the XFLR5 software. In this XFLR5 
software, the model of the aircraft was 
made first. The output of the aircraft 
model using XFLR5 is given at Figure 2-
1: Model LSU 05-NG in XFLR5-1. 

 

 
Figure 2-1: Model LSU 05-NG in 

XFLR5 
 

The results of this simulation provide 
stability derivative values which will be 
used as the basis for calculating the 
elements in matrices A, B, and C. The 
derivative of aerodynamic stability in 

question includes the stability derivatives 
used for longitudinal and lateral motion. 
The assumption of this simulation is in a 
state of the cruise where there is no 
rotation in the control plane or the 
control plane on the plane. 

Derivatives of aerodynamic stability for 
aircraft motion on the longitudinal 
dimension are given as follows: 

 
Table 3-2: Stability derivatives of 

longitudinal axis 
 

Stability 
derivatives of 
longitudinal 

 
Values 

𝐶�k -0.0012921 
𝐶�� 0.11819 
𝐶�k -0.00069528 
𝐶�v 5.3799 
𝐶�n 11.331 
𝐶�k 0.035372 
𝐶�v -4.4388 
𝐶�n -21.655 

  
While the simulation results of 

aerodynamic stability derivatives for 
lateral motion are given in Table 3-3. 
 
Table 3-3: Stability derivatives of lateral 

axis 
 

Stability 
derivatives of 

lateral 

 
Value 

𝐶�x -0.25652 
𝐶�{ 0.015134 
𝐶�w 0.21229 
𝐶�x -0.012482 
𝐶�{ -0.53234 
𝐶�w 0.062209 
𝐶Ex 0.11286 
𝐶E{ -0.017257 
𝐶Ew -0.093463 

 
 
3.1 Analysis of Stability and Control on 
the Longitudinal Matrices 
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Based on the data in Table 3-2, 
obtained a matrices A and B in the 
longitudinal motion as follows 

 
A

=
−0.00271615
−0.257616
0.0576336	

0

0.248462
−11.3097	
−7.23232

0

0
68.9497
−11.3237

1

−9.81
0
0
0

 

B = 	
1.959083
−73.99448
−188.4752

0

 

Then to find the stability of the 
dynamic system, eigenvalues and pole 
locations will be sought in the imaginary 
domain plane. By using the determinant 
formula the values of the roots of 
matrices A are obtained as follows 

 
Table 3-4: Eigen values of matrices A on 

the longitudinal dimension 
 

Symbol Value 
𝜆' -11.31719 - 22.33163i 

𝜆) -11.31719 + 22.33163i 

𝜆~ -0.00089 - 0.19840i 

𝜆� -0.00089 + 0.19840i 
 
Because the eigenvalues of matrices A 

are negative or less than zero, based on 
Theorem 1 (George, 2015) that the 
dynamic system composed of decreasing 
the motion of the LSU 05-NG aircraft is 
stable. In addition to analyzing the 
stability can be seen in Figure 3-2. In 
Figure 3-2, it appears that all 
characteristic roots are located to the left 
of the imaginary axis. This means that 
the LSU 05-NG is dynamically stable on 
the longitudinal dimension. On the other 
hand, it is necessary to do a phugoid 
mode analysis. Phugoid mode is a mode 
where a deviation occurs so that 
sinusoidal motion occurs at low 
frequencies. This needs to be analyzed 
also to determine the stability of the 
aircraft when there is interference. The 

phugoid mode analysis results are based 
on calculations using the following 
formula 

 
𝜆{�k��+�

= −
𝑍k𝑋n − 𝑋k𝑍n

2𝑍n

±
𝑍k𝑋n − 𝑋k𝑍n

2𝑍n

)

+
𝑔𝑍k
𝑍n

 

 
 
(3-1) 

 
Based on the data in Table 3-2 and Eq. 

(3-1) the following characteristics for 
phugoid mode are obtained. 

 
Table 3-5: Value of phugoid mode 

output characteristics 
 

Characteristic Value 
𝜆{�k��+� -0.001358 ±0.16323i 

Undamped 
Natural 
Frequency 

0.163236Hz 

Damped 
Natural 
Frequency 

0.16323Hz 

Damping Ratio 0.008319 

Time Periode 37.86068737 
 
In addition to the phugoid mode, a 

short period analysis is also performed. 
Where this short period is the oscillation 
motion in a shorter time than the 
phugoid mode. The analysis results for 
the short period are given in Table 3-6. 

It can be seen in Figure 3-3 and 
Figure 3-4 the simulation results for 
phugoid mode and short periods of 
motion equations on the longitudinal 
dimension. Based on Figure 3-3 and 
Figure 3-4 there are differences. For 
Figure 3-3, because the damping ratio is 
very small, it takes a long time to return 
to a stable state. Whereas in Figure 3-6, 
because the damping ratio is quite large, 
the time to stabilize is quite fast.	
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Table 3-6: Value of short periode mode 
output characteristics 

 

Characteristic Value 
𝜆���wj -1.45372	±8.73554i 

Undamped 
Natural 
Frequency 

8.855674 Hz 

Damped 
Natural 
Frequency 

8.73554 Hz 

Damping Ratio 0.164157 
Time period 0.707454834 

 
Based on the analysis of the phugoid 

mode and short period, because the 
negative value is negative and based on 
the location of the pole as shown in 
Figure 3-2, the dynamic system 
composed of decreasing equations of 
motion at LSU 05 –NG is stable. 

The next step is to analyze the 
controllability of the LSU 05-NG dynamic 
system using the Kalman rank condition. 
As the definition in the previous chapter, 
it will be proven that the linear system is 
said to be controlled if for any arbitrary 
condition 𝑥(0) there is an unlimited 
number of 𝑢(𝑡) to transfer the state of  
𝑥(0) to any final state  𝑥(𝑡') in interval 𝑡7 ≤
𝑡 ≤ 𝑡'.  

The solution of the system in Eq. (3-2) 
is as follows  

 
𝑥 𝑡

= 𝑒�j𝑥 0 + 𝑒� jF� 𝐵𝑢 𝛾 𝑑𝛾
j

7

 

 
(3-2) 

 
where A and B are linearized matrices 

for longitudinal motion. Assuming the 
dynamic system in Eq. (2-2) is a 
controlled system, there is a controller 
𝑢(𝑡) so that any 𝑥(0) can be transferred to 
𝑥 𝑡' . By choosing 𝑡 = 𝑡' Eq.  
(3-2) becomes 
𝑥 𝑡'

= 𝑒�j�𝑥 0 + 𝑒� j�F� 𝐵𝑢 𝛾 𝑑𝛾

j�

7

 

 
(3-3) 
 

 
To guarantee the existence of the 

controller 𝑢(𝑡) wich transfers 𝑥(0) to 𝑥(𝑡') 
within a finite time a non-singular matrix 
is defined  

𝑊 0, 𝑡' = 𝑒F��𝐵𝐵�𝑒F���𝑑𝛾

j�

7

 

 

 
(3-4) 

where 𝐵� is the transpose of 𝐵 matrices. 
Define the 𝑢(𝑡) is controller matrices as 
follows  
𝑢 𝑡 = −𝐵�𝑒F��j𝑊F' 0, 𝑡'  

𝑥 0 − 𝑒F�j�𝑥'  
(3-5) 

 
where 𝑊F' 0, 𝑡'  is invers matrices 
𝑊 0, 𝑡' . 

By substituting Eq. (3-5) into Eq.  
(3-3), 𝑥 𝑡' = 𝑥' is obtained. Its 

means that there is a controller 𝑢(𝑡) so 
the dynamics system can be controlled. 
After that the rank condition of the 
matrices 𝐵		𝐴𝐵	⋯	𝐴EF'𝐵  will be 
evaluated. Because the size matrice A is 
4×4 then the value 𝑛 = 4 the control 
matice for the dynamic system in Eq. (2-
2) is given ac follows 

 
𝐵	𝐴𝐵	𝐴)𝐵	𝐴~𝐵  (3-6) 

  
Based on matrices A and B generated in 
longitudinal motion, then Eq. (3-6) 
becomes  
 
𝑀��

= 10 
0

−0.0001
−0.0002

0

0
−0.0122
0.0027
−0.0002

−0.0012
0.3216
0.0577
0.0027

0.0537
0.3423
−2.9793
0.0577

 

 
Because the determinant of matrices 

𝑀�� ≠ 0, so matrices 𝑀�� has rank equal 
to 4. Based on Theorem 2, the dynamic 
system that is composed of a linear 
equation of linear motion has controlled 
properties. 

 
 



Jurnal Teknologi Dirgantara Vol. 18  No. 2 Desember 2020 : hal 81 – 92 
 

 88 

 
Figure 3-2: Pole position on the longitudinal dimension 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3-3: Longitudinal dimension simulation results in phugoid mode 
 
 

 
 

Figure 3-4: Longitudinal dimension simulation results in a short period 
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3.2 Analysis of Stability and Control in 
Lateral Dimension 
Analysis of stability and controllability in 
the lateral dimension  
is done by calculating the values of the 
matrix elements A and B in the Eq. (2-15). 
Based on the data in Table 3-3: Derivative 
stability of lateral motion, the linear matrix 
A and B are obtained as follows 
  

𝑨 =
−𝟎. 𝟓𝟑𝟗𝟐𝟓𝟏
−𝟎. 𝟎𝟐𝟒𝟎𝟎𝟕𝟖
𝟏. 𝟎𝟏𝟓𝟒𝟔	

𝟎

𝟎. 𝟎𝟖𝟕𝟒𝟖𝟗𝟐
−𝟑𝟐. 𝟐𝟒𝟐𝟏	
−𝟑. 𝟔𝟖𝟏𝟔𝟑

𝟏

−𝟕𝟓. 𝟑𝟔𝟕𝟐
𝟑. 𝟏𝟖𝟔𝟏𝟔
−𝟏. 𝟗𝟗𝟔𝟔𝟔

𝟎

𝟗. 𝟖𝟏
𝟎
𝟎
𝟎

 

𝐵 = 	
−20.83547
−16.8183
37.95013

0

 

By using eigenvalue method of matrices A, 
obtained the characteristic values of 
matrice A are as follows  
Tabel 3-4: Eigen value of matrices A in 
lateral dimension 

Symbol Value 
𝜆' -31.88672+0.00000i 
𝜆) -1.45186-8.76579i 
𝜆~ -1.45186+8.76579i 
𝜆� 0.01242+0.00000i 

 
There are 3 modes if analyzed based 

on the root characteristics of matrix A, 

namely dutch roll, spiral, and roll 
subsidence. Three modes can be seen in 
Figure 3-5. Based on Table 3-7 and Figure 
3-5 the spiral mode is positive and the 
pole is located to the right of the 
imaginary axis. This indicates that in 
spiral mode the plane's motion is 
unstable. However, for dutch roll and roll 
subsidence, it is stable. If the longitudinal 
motion is analyzed for two modes, namely 
the short period and phugoid mode, then 
the lateral movement also analyzes the 
dutch roll mode. Dutch roll is motion 
instability caused by disturbance 
resulting in a combination of yawing and 
rolling motion. Simulation results for 
lateral motion in dutch roll mode are given 
in Figure 3-6. 

Based on Figure 3-6, the yaw rate (r) 
has a peak value of 5.322272 at 0.15 
seconds and returns to the settling time 
at 7.43 seconds. Roll rate (p) has a peak 
value at 0.2 seconds of 0.495407 degrees 
/ s and returns stable at 6 seconds of the 
graph to zero. The angle of roll on the 
graph starts from -0.06867 in the initial 
seconds and has a peak value of 0.042045 
degrees at the second to 0.39 and 
continues to oscillate until stable again at 
4.49 seconds. 

 
 
 
 
 
 
 
 
 
 
 

 
 
 

Figure 3-5: Graph of a mode of lateral motion 
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Figure 3-6: Simulation results of lateral motion mode dutch roll 

 
Next, the controllability of the dynamic 

system on the lateraldimension will be 
analyzed. The steps for analysis of 
controllability in the lateral dimension 
are the same as the analysis of 
controllability in the longitudinal 
dimension. The first thing to do is to 
prove the existence of the controller 𝑢(𝑡) 
so that any 𝑥(0) can be transferred into 
𝑥 𝑡' . Therefore defined 𝑢(𝑡) as a 
controller as in Eq. (3-5). Based on the 
analysis done previously on the 
longitudinal dimension, the controller 
𝑢(𝑡) can be guaranteed so that any  𝑥(0) 
can be transferred to 𝑥 𝑡' . When it can 
be guaranteed that there is a controller 
𝑢(𝑡) will be analyzed matrice 𝑁�� =
𝐵	𝐴𝐵	𝐴)𝐵	𝐴~𝐵 . 

With the input matrices A and B on the 
lateral dimension obtained  

𝑁�� = 10­
−0.0002
−0.0002
0.0004
0

−0.0285
0.0066
−0.0004
−0.0002

0.0407
−0.2144
−0.0527
0.0066

3.9947
6.7443
0.9359
−0.2144

 

 
Determinant of matrices 𝑁�� not equal 

to zero, it’s meaning that matrices 𝑁�� 
has inverse and rank. Based on an 
identification of the rank of matrices  𝑁�� 
the number of rank of matrices 𝑁�� is 4. 
Where the rank of matrices 𝑁�� is equal 

to 𝑛 = 4. Because the rank of matrices 𝑁�� 
is equal to 𝑛, then matrice  𝑁�� can be 
controlled in other words, dynamic 
systems of the lateral dimension are 
controlled. Simulations performed both 
on the longitudinal and lateral 
dimensions, are simulated by calculating 
the load carried by the LSU 05-NG when 
carrying out the mission. Based on 
simulations using XFLR5, when carrying 
out missions carrying 30 kg loads, the 
LSU 05-NG remains stable  

 
4 Conclusion 

Analysis of the stability and control of 
the dynamic system in longitudinal and 
lateral motion shows that the dynamic 
system in the longitudinal dimension is 
stable and can be controlled by using 
eigenvalue method and Kalman Rank 
Condition Method. This is because matrix 
A has a negative characteristic value and 
the location of the pole in the s-plane is 
to the left of the imaginary axis. On the 
other hand, because the control matrix 
𝑀�� has the same rank as 𝑛, the dynamic 
system in longitudinal motion can be 
controlled or controlled. Whereas in the 
lateral dimension, three eigenvalues or 
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negative  characteristics are stable in the 
subsidence roll and dutch roll. However, 
in spiral mode, it is not stable due to 
positive eigenvalue. The 𝑁�� control 
matrix has the same rank as 𝑛, so it can 
be concluded that the dynamic system in 
the lateral dimension is controlled. 
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