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Abstract 
Flight Planning is a document prepared by airline which consist of aircraft 

information, planned route, required fuel, carried load, weather forecast, etc. Optimization 
in flight planning aims in reducing fuel consumption to reduce cost and emission. The 
purpose of this research is to optimize the flight planning route in Three-Dimensional 
approach using Genetic algorithm. 

The algorithm uses population size of 500 individuals that generated with 0.01 
mutation rate, 100 generation cycle, and 20 elite sizes. The case study covers flights of 
Jakarta – Tanjung Pinang, Jakarta – Makassar, and Jakarta – Manado. The aircraft gross 
weights are analyzed to study the effect on the resulted flight route. The aircraft 
performance database from Flight Crew Operating Manual (FCOM) of A320 aircraft was 
used.  

It is concluded that the algorithm able to find the optimal flight route at the range of 
cruise altitude from 35,000 to 39,000 ft. Results from Jakarta - Tanjung Pinang flight 
showed an average of fuel reduction of around 2.29% followed by Jakarta – Makassar flight 
with 13.28% and Jakarta – Manado flight with 15.68%. Although, the resulted altitude 
profile shows a fluctuation in the middle of route, in average it is a climb. 

Keywords: 3D Flight Planning, Fuel Consumption Optimization, Genetic Algorithm, Flight Crew 
Operating Manual, Fuel Saving.  

 
1. Introduction 
  
  Flight planning has been used by pilots to select the best route from departure airport to 
destination airport. With the recent Flight Planning application, it can predict the estimate 
time arrival, distance, speed, altitude, and how much fuel to be carried. Flight planning 
itself is the process of producing a flight plan to describe a proposed aircraft flight. It 
involves fuel calculation, to ensure that the aircraft can safely reach the destination, and 
compliance with air traffic control requirements, to avoid the risk of midair collision. The 
characteristics of different types of aircrafts also must be taken into account. For example, 
the fuel capacity, Engine Thrust, MTOW (Maximum Take-off Weight), the gross weight, etc. 
 Since, the emission gas produced by aircraft is also considered dangerous for the 
environment, reduction of fuel burn is become essential. Emissions generated by aircraft 
engines contains approximately 70% carbon dioxide (CO2), less than 30% water vapor (H2O) 
and less than 1% nitrogen compounds (NOx), carbon monoxide (CO), sulfur oxides (SOx) 
and others (Slamet, 2006). There are many ways to reduce emissions on aircraft, one of 
which is to reduce excessive use of aircraft fuel. (SURATMAN, Eman, Dr.Ir. Sigit Priyanto, 
2004) developed the implementation of RVSM (Reduced Vertical Separation Minimum) 
method and had the result for short haul flight about 0.8% fuel savings, and 1.1% for 
medium haul flight. 
 The selection of altitudes greatly affects fuel consumption. However, in real flight aircraft 
does not always fly in optimal altitudes. Therefore, this research aims to optimize the fuel 
consumption in a 3D Flight Planning. The 3D aspect of this optimization includes 2D lateral 
and the altitudes. In this case the algorithm will search for a route based on the lowest fuel 
burn by taking different routes and altitudes. Genetic algorithm is selected for eliminating 
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complex computational constraints. This manuscript consists of methodology in chapter 2, 
result and analysis in chapter 3 and conclusion and recommendation in chapter 4. 
2. Methodology 

This section describes methodology used in the research. It may describe a review of 
related works, problem definition, and methods used in this research.  

2.1. Related Works 
In a flight trajectory optimization, the performance boundaries (the fuel burn and the 

flight time) for the trip along a given trajectory are determined through a simulation. This 
calculation is performed utilizing the aircraft performance model and design, anticipated 
climate condition, speed, altitude, and navigation constraint. The atmosphere conditions (air 
temperature and winds) experienced during a flight might be not the same as the 
assessed/anticipated qualities utilized in the optimization. The extent of the contrast 
between the anticipated and the real atmospheric function of the precision of the 
atmospheric data forecast, and of the difference between the time when the forecast is 
generated and the time instance for which the atmospheric conditions are estimated. This 
distinction will affect the flight trajectory performance boundaries assessment results (fuel 
consume, flight time, absolute expense), and, as an outcome, the advancement calculation 
results (for example determination of a non-ideal or close ideal flight profile, non-compliance 
with the time limitation, and so forth) 

The factors that must be considered are the performance of an aircraft and the lateral & 
vertical navigation profiles. (Dancila, 2019) presented the arrangement of assessed vertical 
navigation profiles are portrayed by indistinguishable altitudes and speed at their initial and 
last waypoints, a limit of one altitude step and flown at consistent speed. (Mendoza et al., 
2016) concluded that trajectory optimization represents a significant occasion to diminish 
fuel consumption from the flights that don't fly at their ideal speed and altitude.  

(Félix Patrón et al., 2014) presented the mix between two distinct trajectories' 
optimization types: one improving the vertical navigation profile, and the other upgrading 
the lateral navigation profile. The lateral and vertical navigation profiles are analyzed to get 
the ideal cruise trajectory as far as fuel consumption. (Legrand et al., 2018) build up an 
approach to optimize the trajectory in presence of wind. He utilized Bell algorithm to process 
the ideal trajectory dependent on the wind forecasts.  

In the literature (Ng et al., 2014) investigated that flying in wind ideal trajectories with a 
fuel-ideal vertical profile lessens average fuel burn of international flights cruising at a 
single altitude by 1–3%. The wind effects during a flight are a very important factor to 
consider in the creation of flight trajectories. (Lindner et al., 2020) investigated the benefit of 
en-route weather updates and got 17% of fuel saving in return. (Franco et al., 2017) build 
up an optimization of the aircraft course considering wind vulnerability. The examination is 
centered on a cruise flight made out of a few fragments interfacing certain waypoints. 
Results are introduced for a model of B767-300 airplane, for a given trans-maritime route, 
considering a genuine gathering weather forecast, and with the goal of limiting the normal 
complete fuel consumption. 

(Hartjes et al., 2016) combined a develop optimization algorithm with a point mass 
aircraft model to optimize 3-dimensional long-haul aircraft trajectories in a wind field. It was 
the point of limiting the flight time in which the arrangement of constant build-up trails may 
occur, while considering the consequences for flight time and absolute fuel burn. (Sridhar et 
al., 2011) developed a wind-optimal trajectory for aircraft while avoiding the regions of 
airspace that facilitate persistent contrails formation. Although there was an increase in 
terms of fuel about 2%, the tradeoff for reducing 70% of travel time through contrail regions 
when altitude is optimized, satisfactory. 

2.2. Problem Definition 
The selection of altitudes greatly affects fuel consumption. However, in real flight aircraft 

does not always fly in optimal altitudes. Therefore, this research aims to optimize the fuel 
consumption in a 3D Flight Planning. The 3D aspect of this optimization includes 2D lateral 
and the altitudes. In this case the algorithm will search for a route based on the lowest fuel 
burn by taking different routes and altitudes. Genetic algorithm is selected for eliminating 
complex computational constraints. Such as finding the route with the closest distance, the 
lowest fuel burn, and the altitude where the climb and descend fuel are also calculated. 
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2.3. Method 
The study aims to solve the fuel optimization problem using genetic algorithm for 

selecting the routes and altitudes with the lowest fuel consumption. This chapter will 
explain the methodology used and how to apply it with the tools and data available. It will 
start with explaining the genetic algorithm used in this optimization. Next is the aircraft 
performance database (PDB). And finally, is the vertical and lateral navigation profile 
optimization.  

2.3.1  Genetic Algorithm 
A genetic algorithm is a search heuristic that is inspired by Charles Darwin’s theory of 

natural evolution. This algorithm reflects the process of natural selection where the fittest 
individuals are selected for reproduction to produce offspring of the next generation. In this 
section we will explain the original theory and implementation of Genetic algorithm. 

2.3.1.1 Original Theory 
The cycle of natural selection begins with the choice of fittest individuals from a 

population. They produce offspring which acquire the attributes of the parents and will be 
added to the next generation. On the off chance that parents have better fitness, their 
offspring will be superior to parents and have a better possibility of surviving. This cycle 
continues repeating and toward the end. At the end, a generation with the fittest individuals 
will be found. 

There are five phases in a genetic algorithm: Initial population and individuals, Fitness 
function, Selection, Crossover, and Mutation. 
• Initial Population and individuals 

The initial population is a set of individuals can be seen in Figure 2-1. The number of 
initial populations is defined by number of combinations of its properties and computing 
capabilities of used hardware. (Note that the initial population is supposedly determined by 
the algorithm, however the population size in the input will limit the number of individuals 
since the hardware is not capable in searching for thousands of individuals).  

The individuals are basically the function of combination and permutation however it 
will generate thousands of individuals and since the author computer is not capable in 
iterating it, therefore the population size is limiting the number of individuals.  
• Fitness function 

The fitness function determines how fit the individual is (the individual's ability to 
compete with other individuals). It provides a fitness score for each individual.  
• Selection 

This selection aims to select the fittest individual and let them pass their genes to the 
next generation.  
• Crossover 

This stage is the most significant phase in the genetic algorithm. After the selection is 
done, the surviving individuals will reproduce to create new set of individuals with 
combination of different flight levels and waypoints. Its aim is the same to create new set of 
trajectories with minimum fuel burn. A uniform crossover method was used to create the 
new individuals. 
• Mutation 

In certain newly formed offspring, some of their genes may mutate with low random 
probability. This implies that some of the waypoints will be randomly selected and changed 
from the list of routes as well as the altitudes.  

2.3.1.2 Algorithm Implementation 
In this section the implementation of algorithm is explained in the same five phases:  

• Initial Population 
In this case the individuals are the routes from starting point to destination point. Each 

individual consists of gene which are latitudes, longitudes and altitude. The distance and 
fuel burn between waypoints will be calculated by the algorithm. The altitudes in each route 
as mentioned before has 6 different flight levels varying from 29,000 ft. to 39,000 ft. as 
shown in Figure 2-1. 
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The waypoint here actually obtained from the previous research (Sentoso & Ruseno, 
2021) who tries to find the optimal routes in the horizontal plane (latitude and longitude). 
The distance is needed to find the total fuel burn in each individual which has the 
important role in the next section. 

Figure 2-1: Visualization of individual properties in Genetic Algorithm 

• Fitness Function 
In this segment, each of the individuals are being evaluated for the minimum fuel burn 

from each route with its flight level. To calculate the fuel burn, a performance database of a 
certain aircraft is needed, in this case it is A320 type aircraft. By using the linear and 
exponential interpolation to find the total fuel burn per individuals. Then the individuals will 
be sorted from the minimum fuel burn to maximum fuel burn. 
• Selection 

This process will select the best route with smallest fuel burn used in the cruising 
section. There are different methods in selecting the individuals. In this paper we use the 
rank selection which will sort the individuals according to the fuel burn whereas only top 20 
as the elite size of the fittest individual will be chosen. The visualization of the unsorted and 
sorted individuals is shown in Figure 2-2 and 2-3. After the individuals are survived, they 
are begun to reproduce to create next stronger generation. 

 

 

Figure 2-2: Unsorted Individuals 

• Crossover 
The comparison of several crossover methods is shown in Figure 2-4. For each parent 

pair to be mated, the point of crossing is randomly selected from within the genes. However, 
the first and the last genes will not be cross-overed. The crossover points will be random but 
the position of the waypoints keep the same so there will not be any illogically routes.  After 
the individuals are created, they will be evaluated again then reproduce again until a 
predefined number of generations are reached. 
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Figure 2-3: Sorted Individual 

Figure 2-4: Methods of Crossover 
• Mutation 

The mutation function is to swap the altitude and waypoints to find the chance of 
changing it to find the optimal fuel burn. The altitude and waypoints will be randomly 
picked by the algorithm. This research used the 0.01 mutation rate. It means that the 
mutation will be only possible for 5 individuals from 500 populations. 

It depends on the how many generations is defined; the new set of population will go 
through the same process until a predefined number of generations are reached.  Since the 
algorithm is based on randomness, the possibility of best solution is not fixed but vary. The 
algorithm is implemented in Python programming language version 3. 

2.3.2  Fuel Consumption Optimization 
This section discussed about how to optimize the fuel consumption. We used a FCOM 

(Flight Crew Operating Manual) data as database for calculation including the ISA (density), 
Aircraft Speed and the fuel burn per altitudes and per distance. This research used aircraft 
performance data based on the FCOM of Airbus A320. The used data tables are shown in 
Appendix A-1. This data includes precise information on the phases of climb, cruise, and 
descend as shown in Figure 2-5. Each one of the data tables gives the data of fuel burn, 
speed, and specific range. In this optimization will only use the specific range in long range 
cruise data, and fuel burn and distance for the climb and descend. Each of the calculation 
in the table to get the fuel burn (kg) used the exponential and linear interpolation.  

 

Figure 2-5: Flight Phases 
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There are several phases during flight, however in this optimization will only focus on 
climb until descend phases. Notice that in the cruise segment, there will be step descend or 
step climb which also will be calculated. The input and the output in this calculation as 
shown in table 2-1. 
 

Table 2-1: Input and Output of aircraft performance calculation 
 

Phases Input Output 

Climb Gross Weight [Kg] 
Altitude [ft.] 

Fuel Burn [Kg] 

Cruise Gross Weight [Kg] 
Altitude [ft.] 

Specific Range 
[NM/1000kg] 

Descend Gross Weight [Kg] 
Altitude [ft.] 

Fuel Burn [Kg] 

 
The purpose of solving the problem is to determine the fuel consumption of each route 

and altitudes that can be selected in order to achieve the minimization of the total fuel 
consumption. The constraints start from equation (2-1). Where the total fuel (TF) is 
calculated by the sum of cruise fuel and climb or descend fuel. The maximum fuel capacity 
of A320 is 21,448 Kg. Therefore, any number greater than that will not be selected in the 
genetic algorithm. 

 
 𝑇𝐹 = 𝐹𝑐𝑟(𝑤, 𝑎𝑙𝑡)	 + 𝐹𝑢𝑒𝑙(12,13)     (2-1) 

  
Next constraint is from the equation (2-2) where we can see it is the fuel cruise. Here we 

set the weight can vary from its maximum 74,000 Kg, 70,000 Kg, 65,000 Kg, 60,000, and to 
its minimum 55,000 Kg since the weight is decreasing in each waypoint because of the fuel 
loss. And the altitude range is from 29,000 ft. to 39,000 ft. the cruising calculation is to 
calculate the fuel between each waypoint at a certain altitude.  

Note that in the cruise segment, specific range will be used to calculate the fuel burn. 
Therefore, the equation to calculate it is as follows: 

 
 

𝐹𝑐𝑟(𝑤, 𝑎𝑙𝑡) =
𝑑𝑤
𝐷

 
(2-2) 

 
Where Fcr: fuel consumption in cruise (Kg), dw: distance between waypoints (NM) and D: 

Specific Range (distance/1000kg) and (w, alt) means that fuel consumption is a function of 
weight and altitude. Another constraint is from equation (2-3) and (2-4) which are the fuel 
consumption where the aircraft is climbing or descending. The input will be the same as the 
cruising phase which are the altitude and gross weight. Using the climb and descend data 
from FCOM as shown in Appendix A-1, to calculate the fuel at climb and descend will be as 
follows: 

 
 𝐹𝐶 = 𝐹𝐿 𝑤, 𝑎𝑙𝑡 	8	 − 𝐹𝐿 𝑤, 𝑎𝑙𝑡 2 (2-3) 

 
 𝐹𝐷 = 𝐹𝐿(𝑤, 𝑎𝑙𝑡)2	 − 𝐹𝐿 𝑤, 𝑎𝑙𝑡 8 (2-4) 

 
Whereas FC is Fuel Climb, FD is Fuel Descend, N is next segment and C is current 

segment and FL(w,alt) is the function of weight and altitude according to the interpolation 
and the FL is the fuel required for that flight level (Kg). This however has a different 
interpolation; the climb data and cruise data are using exponential interpolation while the 
descend data is using linear interpolation. Since, the flight in the optimization is able to 
climb or descend during cruise phase, thus it could lead to fluctuation in vertical navigation 
profile (altitude). In the calculation, the constraint that we assumed to be constant is the 
Long-Range Cruise Speed (300-396 kts), ISA CG = 33%, and Maximum Cruise Thrust 
Limits. 
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2.3.3  Flight Route as a Grid 
We used the resulted optimal and alternate routes from (Sentoso & Ruseno, 2021) in 2D 

as the base grid. The resulted lateral routes are shown in figure 2-6. The other 2 routes are 
shown in Appendix A-2. Each of the routes has its optimal and alternate routes which then 
creating a 3D Grid. The alternate routes acting as the available route from starting point to 
destination point. 

 

 

 Figure 2-6: Jakarta – Tanjung Pinang Optimum 2D flight  
                                              routes (Santoso, 2020) 

The 3D grid is created when the altitude is implemented in the lateral grid. From the 
paper of (Mendoza et al., 2016), the grid visualization will be shown in the figure 2-7.  
 

Figure 2-7: 3D Grid Visualization (TOC: Top of Climb, TOD:  
                                           Top of Descend) 

Here the range of altitude will be from 29,000 ft. to 39,000 ft. with separation of 2,000 ft. 
between altitudes. Note that the starting point or departure and arrival airport will be 
considered as 0 ft. The cruise altitude begins in TOC which is 1 waypoint after start point 
and ends 1 waypoint before destination airport. 

The case study covers in this research consist of 3 scenarios:  
- Scenario 1 is to analyze the effect of the generation number into the convergence of the 

result.  
- Scenario 2 is to analyze the effect weight difference to the selection of optimum route.  
- Scenario 3 is to analyze the altitude selection by the algorithm and compare it with the 

optimal altitude from other sources. 
The specification of hardware and Software used in this simulation is as follows: 
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- Operating System  : Win 10 Pro 
- System Manufacture  : HP 
- Processor   : i5 9th Gen 
- Memory   : 8 Gb 
- VRAM   : 128 MB 
- Application  : Python 3.6 

3. Result and Analysis 
The main result is presented along with the analysis. The result will be divided into 3 

scenarios. 

3.1. Scenario 1 
In this scenario, the route we take starts from Jakarta to Tanjung-Pinang with its 

alternate routes. The inputs of the algorithm are: 
• Initial Population = 500 
• Elite Size = 20 
• Mutation Rate = 0.01 
• Generation numbers = 5, 25, 50, 100  
• Maximum Take-Off Weight (MTOW) = 74,000 Kg 

Supposedly the initial population is not limited by the author and will generate itself. 
However, due to low specification of the hardware it took 3 hours to generate 100 
generations without limiting the population. Thus, the initial population is limited to speed 
up processing time. 

To find the generation number that produce convergence value, we run several numbers 
of generation as 5, 25, 50 and 100 in one case of scenario which are from Jakarta – Tanjung 
Pinang. 

As seen in Figure 3-1, respectively the 5, 25, 50 and 100 generation has a different value 
in initial fuel burn. They are 3117 Kg, 3195 Kg, 3112 Kg and 3162 Kg respectively. It is 
because the initial population are generated randomly by the algorithm. Thus, the 
calculated fuel burns are not always the same. However, it converged in the final generation.  

The Figure 3-1 shows that the convergence value reached in the 12th generation. It was 
confirmed by the altitude profile that remain the same from the 25 generation until 100 
generations.  It means that it reached the best solution generated by the algorithm.  

The optimum lateral route selected by the algorithm is shown in Figure 3-2. It is the 
same route as the generated route from Dijkstra Algorithm from the research of (Santoso, 
2020) shown in Figure 2-6. 

 

Figure 3-1: Fuel Burn and Altitude Profile of the best Route in 5, 25, 50 and 
                              100 generations 

The next routes to be observed are the Jakarta-Makassar and Jakarta-Manado route. 
The used routes are shown in Appendix A-2. The detail results are shown in Appendix B-1. 
In general, it has the similar result with flight Jakarta-Tanjung Pinang. The 100 generations 
provided convergence result.   
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Figure 3-2:  Lateral Optimum Route generated by 5, 25, 50 and 
                                  100 generations 

For Jakarta-Makassar route, the genetic algorithm able to reduce fuel burn from 
5,407Kg into 5,010Kg. The optimum route selected is like the result of previous research 
(Sentoso & Ruseno, 2021). 

For Jakarta-Manado route, the genetic algorithm able to reduce fuel burn from 8,979Kg 
into 7,320Kg. However, the optimum route selected is the alternate 1 which has a little bit 
longer around 1207 NM compared to the optimum route from the previous research. It 
means that with the combination of more optimum altitude, it could lead to the changes in 
the selection of optimum route. 

3.2. Scenario 2  
For this scenario, 5 aircraft weights have been analyzed starting from 74000 kg, 

70000kg, 65000kg, 60000kg and 55000kg for 3 routes. The fuel saving is calculated from 
the difference between fuel burn at final generation and initial generation. The complete of 
resulted fuel burn is shown in Appendix B-3. The summary of fuel burn is shown in Figure 
3.3. 

 
 

Figure 3-3: Reduction of Fuel Burn per aircraft weights: 74000Kg, 70000Kg, 
                               65000Kg, 60000Kg, 55000Kg 

The Figure 3-4 shows the resulted fuel saving for different aircraft weights. The fuel 
savings are not proportional to the weight of the aircraft at heavy conditions but changed at 
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lighter conditions. From the figure 3-3, in Jakarta - Tanjung Pinang, the amount of fuel that 
is reduced is relatively lower and has fluctuations. Starting with a weight of 70000kg 
decreased by 1.97%, a weight of 65000kg has decreased by 1.5%, a weight of 60000kg has 
decreased by 2.84% and finally with a weight of 55000kg has decreased by 1.48%. 

 

Figure 3-4: Reduction of Fuel Burn on Different Weight 

Next is the route of Jakarta – Makassar starting with a weight of 74000kg, 70000kg, 
65000kg, 60000kg, and 55000kg. The reduced fuel on the Jakarta Makassar route is quite 
interesting because at the beginning the weight of 74000kg experienced a quite low fuel 
drop but became large at lighter weight. The fuel burn on weight 74000kg has drop to 
7.34%, weight 70000kg drop to 14.4%, weight 65000kg drop to 12.44%, weight 60000kg 
drop to 16.22% and lastly weight 55000kg drop to 16.03%. This happen because the initial 
population of starting generation is picked randomly by the system. The waypoints and 
altitudes were picked randomly to create the initial individuals. Therefore, the initial fuel 
burn could be higher or lower. 

Then finally the last route of the analysis, route from Jakarta to Manado. The reduced 
fuel on the Jakarta-Manado route is almost the same as the Jakarta-Tanjung Pinang route, 
except that the Jakarta-Manado route has decreased drastically from a weight of 74,000 kg 
to a lighter weight. Starting with a weight of 74000kg, 70000kg, 65000kg, 60000kg, 
55000kg. The decrease in fuel burn at the weight listed as follows: 

• Weight 74000 Kg = 18% 
• Weight 70000 Kg = 13.12% 
• Weight 65000 Kg = 13.18% 
• Weight 60000 Kg = 16.90% 
• Weight 55000 Kg = 17.20% 

Since the algorithm generate the initial population randomly therefore if you can see in 
the appendix, in the 60000kg of gross weight it has a spike on the fuel burn per generation 
in each route. Means that the early generation had bad genes, therefore the algorithm will 
continue to iterate so that the best generation is produced in the 100th generation. The 
mutation rate also plays a role in this problem. Since the mutation rate is 0.01 from 500 
individuals, there are 5 individuals that are mutated.  

3.3. Scenario 3 
In the choice of altitude, it is done randomly by a genetic algorithm. The altitude is 

selected in the list that has been created. List of altitudes is as follows: [29000, 31000, 
33000, 35000, 37000, and 39000] each individual will have altitude at each waypoint. In 
this optimization, altitude is still viewed per altitude, not per distance. From 3 case 
examples Jakarta - Tanjung Pinang, Jakarta - Makassar, and Jakarta - Manado will analyze 
the effect of altitude on this optimization. Figures 3-5, 3-6, and 3-7 show the routes with 
different altitudes in different weights. 
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In the route of CKG – TPG (Figure 3-5), the optimal selection of altitude generated by GA 
in weight 74000kg, 70000kg, 65000kg, 60000kg and 55000kg has a fluctuation from the 
waypoint 2 until waypoint 6. However, in the fluctuation has the average of altitude 35000ft 
and 37000ft. The result reaches the optimal altitude but with fluctuation. In the weight of 
65000kg, shows the reasonable altitude with only descend in the waypoint 4. 

 

 
Figure 3-5: Altitude Profile in each Weight for Jakarta – Tanjung Pinang 

 
Next is from CKG – MKS (Figure 3-6), at a weight of 74000 kg and 70000 kg has the 

same altitude from start to end with a fluctuating range from 30000 ft. to 39000 ft. from 
waypoint 3 to waypoint 10. There goes again in the weight of 60000kg has already begin to 
reach the optimal with a bit of fluctuation same goes with the weight of 55000kg. 

 
Figure 3-6:  Altitude Profile in each Weight for Jakarta – Makassar 

 
On the last route CKG – MWB (Figure 3-7), there is something unique about the choice 

of altitude. At a weight of 74000 kg to 55000 kg having the same fluctuating range of 
altitude from 35000 ft. to 39000 ft. It is already reaching the optimal altitudes.  

From the result we can see that the GA has already reach the optimum altitude, this 
concludes that the algorithm succeeds in choosing the altitude for the optimal one. 
However, the fluctuation is due to selection of altitude in the cruising path. Here we make it 
possible that the aircraft can choose the altitudes freely without any restriction in the 
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cruising phase. Therefore, this cannot be compared to the real flight data since the 
constraint is not dynamic. 

 
Figure 3-7: Altitude Profile in each Weight for Jakarta – Manado 

 
Now, if we can see that in these three routes there is a decrease in altitude at the last 

waypoint and an increase or constant in the waypoint before the last one. It can be 
concluded that this algorithm is looking for altitudes with the least fuel burn. Therefore, it 
can be interpreted that the route with that altitude is more fuel optimal than the other 
altitudes. In this case only analyzed 100 generations. There is a possibility that the altitude 
changes in the generation 200 or 300 or more. Which then lead to the longer the route and 
the more the selection of waypoints the better the result is.  

Now when compared with the optimal altitude of the FCOM, it shows that the lower the 
weight the higher the altitude should be. As shown in the Figure 3-8 the dotted line 
represents the optimal altitude at different weights. Why is it different from genetic 
algorithm? Because the first, here the data used is not dynamic. Basically, it just searches 
for the lowest fuel consumption in different altitudes and routes. Second in the genetic 
algorithm, only the altitude that has a low fuel burn is selected randomly, if the last 
descend is selected, it indicates that the minimum fuel burn is achieved with that altitude. 
 

Figure 3-8: Optimal Altitude From FCOM Data (Airbus, 2019). 
 

From the paper of (Patrón & Botez, 2015) and (Félix Patrón et al., 2014) the altitude or 
VNAV were resulted climbing not descending as shown in Figure 3-9 (a) and (b). It because 
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first they did not calculate the descent in the cruise phase. However, the descend 
calculation happened in the last waypoint which represent actual descend not cruise 
descend. Second, the selection of altitudes in their paper can be assume that the next 
altitude must be higher or same with the previous altitude which means there is a limitation 
in the altitude so the aircraft cannot descend in the cruise phase. Last, they used the 
interpolation of wind data and considered the external factor such as the weather and climb 
and descend acceleration 

 

(a)        (b) 
Figure 3-9: VNAV Profile: a. (Patrón & Botez, 2015), b. (Félix Patrón et al., 2014) 

 
Based on the result, the smaller the weight has the stable in altitude. It is because the 

crossover point in the individuals are using the uniform crossover where the altitude before 
and after could be different. Also, the descend data from the FCOM is not sufficient in 
weight 74000 kg to 65000 kg. By comparing it to the resulted altitude from (Patrón & Botez, 
2015), they are not using descend in the optimization.  

Means they are not considering a descent in the cruise segment, however only in the 
last waypoint happened to be a descend segment. An assumption is made by the author 
that in their paper there’s a limitation to the selection of altitude. When the altitude is 
selected the next altitude must be higher or same as the previous altitude so that will not be 
any descend in the cruise segment. 

4. Conclusions and Recommendation 

The algorithm performs well to find the optimal fuel burn routes with changing in 
altitudes. The 100 generations of genetic algorithm are more than enough to generate a 
convergence result. After several gross weights were tested, the results showed changes in 
the optimum route chosen by the genetic algorithm. It can also be seen that the farther the 
route, the more significant the changes to the fuel.  

Results from Jakarta - Tanjung Pinang flight showed an average of fuel reduction of 
around 2.29% followed by Jakarta – Makassar flight with 13.28% and Jakarta – Manado 
flight with 15.68%. The resulted altitude profile shows a fluctuation in the middle of route. 
However, most of it ends with a climb. This happen because the algorithm calculates the 
value of fuel burn in each altitude point by considering possibility of step climb or descend.  

For the better result of this algorithm, it is recommended to use better hardware to run 
the program without having a BSOD (Blue Screen of Death). In addition, dynamic data such 
as time and speed could produce a better result in the route selections. Also, considering 
the wind data could make it comparable to the real flight data. 
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Appendix A-1: Flight Crew Operating Manual (FCOM) Data of A320  
 

Figure A-1: Cruise Data (Airbus, 2019)  Figure A-2: Climb Data (Airbus, 2019) 
 
 

 
Figure A-3: Climb Data Continued (Airbus, 2019) Figure A-4: Descend Data (Airbus, 2019) 
  



Jurnal Teknologi Dirgantara Vol. 19 No. 2 December 2021 : pp 223 – 241 (Calvarico Bima Nugraha and Neno Ruseno) 

238 

Appendix A-2: 2D Optimum and Alternate Flight Route used 

 

Figure A-5: Jakarta – Makassar flight routes (Santoso, 2020) 

 

Figure A-6: Jakarta – Manado flight routes (Santoso, 2020) 
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Appendix B-1: Result for Jakarta – Makassar flight 
 

Figure B-1: Fuel Burn per Generation  Figure B-2: Vertical Navigation Profile 
 

 
Figure B-3: Route Generated at 100th Generation 
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Appendix B-2: Result for Jakarta – Manado flight 
 

Figure B-4: Fuel Burn per Generation  Figure B-5: Vertical Navigation Profile 
 
 

 
Figure B-6: Route Generated at 100th Generation 
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Appendix B-3: Fuel Burn results used for Weight Analysis 
 

 

 

 

Figure B-7:  Result of Fuel Burn per Generation for aircraft weights: 70000Kg, 65000Kg,  
                       60000Kg, 55000Kg 

 


