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Abstract 

In this research, identifying aircraft parameters is carried out for the lateral-
directional dimension by noticing the variations of the given control surface deflection 
input. The inputs are pulse, doublet, and 3-2-1-1. Among the input forms, it is not known 
which state is most suitable for the lateral-directional dimension. Therefore simulation is 
done by varying the input deflection control surface and simulation time. The input given 
is a deflection of the aileron and rudder control surfaces. The purpose of this research is 
to identify the most suitable input for identifying parameters in the lateral-directional 
dimension using the equation error method with the ordinary least square estimation 
technique and to observe the effect of simulation time. The aircraft used is the Lockheed 
C-5 Galaxy. The simulation results show that the combination of the 3-2-1-1 input form 
in the aileron deflection surface and the input pulse shape on the Rudder has an error 
value of about 0.365. This value is smaller among all cases seen from the error matrix A. 
Based on that, the combination of two inputs is the most suitable for the lateral-directional 
dimension than the other inputs that have been given. 

Keywords: aircraft; identification of parameters; model; input variations; lateral-directional.  

Nomenclature 

𝑦  = The Partial derivative of the side force Y to the side force variable v, 1/s 

𝑦  = The Partial derivative of side force Y to rolling rate variable p, - 

𝑦  = The Partial derivative of side force Y to rate variable yaw r, m/s 

𝑦  = The Partial derivative of side force Y to roll angle variable  𝜙, m/s2 

𝑦  = The Partial derivative of side force Y on variable aileron deflection angle 𝛿𝑎, 
m/s2 

𝑦  = The Partial derivative of side force Y to rudder deflection angle variable 𝛿𝑟, 
m/s2 

𝑙  = The Partial derivative of rolling moment L with to side force variable v, 1/ms 

𝑙  = Partial derivative of rolling moment L with to rolling rate variable p, 1/s 

𝑙  = Partial derivative of rolling moment L with to rate variable yaw r, 1/s 

𝑙  = The Partial derivative of rolling moment L with to roll angle variable 𝜙, - 

𝑙  = The Partial derivative of rolling moment L with to aileron deflection angle 
variable 𝛿𝑎, 1/s2  

𝑙  = The Partial derivative of rolling moment L with to rudder deflection angle 
variable 𝛿𝑟, 1/s2  

𝑛  = The Partial derivative of yawing moment N with to side force v, 1/ m s 

𝑛  = The Partial derivative of yawing moment N with to rolling rate p, 1/s 
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𝑛  = The Partial derivative of yawing moment N with to yawing rate r, 1/s 

𝑛  = The Partial derivative of yawing moment N with to roll angle ϕ, - 

𝑛  = The Partial derivative of yawing moment N with to aileron deflection 
angle 𝛿𝑎, 1/s2 

𝑛  = The Partial derivative of yawing moment N with to rudder deflection angle 𝛿𝑟, 
1/s2 

 
 
1. Introduction 

Parameter identification (PI) is a process of estimating the dynamic characteristics of 
a system in the form of dynamic property parameters using input history data and known 
output data (Klein & Morelli, 2006; Remple & Tischler, 2006). One method widely used in 
parameter identification is equation-error in the time domain. The equation-error method 
is based on linear regression using the ordinary least-squares principle. For example, the 
unknown aerodynamic parameter is estimated by minimizing the sum of the squared 
differences between the modelled aerodynamic forces and moments. Linear regression is 
a linear estimation problem, meaning that the model output depends linearly on the model 
parameters.  

In the lateral-directional dimension, there are two inputs, aileron deflection and 
rudder deflection. The aileron is the control surface of the aircraft that controls the roll 
motion. The ailerons are located on the wings and move along the longitudinal axis. The 
type of stability that the aileron does is stabilize the aircraft in the lateral direction. While 
Rudder is the surface of control at the moment, the plane does yaw. Located on the vertical 
stabilizer and moves on the vertical (directional) axis. The type of stability carried out by 
the Rudder is to stabilize the aircraft in a directional direction. 

For this research, we use data flight of C-5 A aircraft, a state-space matrix. The reason 
for choosing the data is because the data has been proven to be truly obtained from the 
real condition of the C-5 A aircraft during flight tests. C-5 A is a huge military logistics 
transport aircraft. The longitudinal control consists of four elevator sections with 
stabilizers, all moving for trim, roll control employing ailerons and spoilers, and 
conventional yaw steering control. The C-5 A uses stability augmentation on all axes. The 
C-5 has a high T-tail, a 25-degree wing sweep, and four TF39 turbofan engines (C-5A and 
B) mounted on pylons under the wings. These engines each had 43,000 pounds of thrust 
and 7,900 pounds (3,555 kilograms) of thrust each (Force, 2011).  

This research uses the equation error method with the ordinary least square 
estimation technique to analyze parameter identification results based on the variation of 
aileron and rudder deflection input given. The research focuses on the lateral-directional 
dimension with the input deflection in the aileron and rudder control plane varied in 9 
input cases. This research succeeded in obtaining the most suitable input combination 
for this dimension with flight test data for the C-5 A aircraft as an example.   

2. Methodology 

The stages of the research, same as the previous research (Jayanti et al., 2019), consist 
of conducting linear simulations, recording aircraft behavior, and identifying the results 
of the matrix against the reference. The modeling process is carried out using the aircraft 
input data and the existing flight test recording data.  

2.1. Related Works 

 In the previous parameter identification research, LAPAN and POLBAN teams had 
identified parameters by observing the effect of control input using the corsair A-7A 
aircraft data in the longitudinal dimension (Jayanti et al., 2019). Jayanti’s research used 
the equation error method with the ordinary least square estimation technique. The 
results show that the 3-2-1 input form has a smaller error value (RMSE) matrix A than 
the doublet and pulse input. The longer of simulation time, the error value (RMSE) for 
each input form is decreased. The RMSE (Root mean square error) value was calculated 
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using matrix A between 0.38 - 0.46 (Jayanti et al., 2019). In the longitudinal dimension, 
based on the research that has been done, the 3-2-1 shape is the most suitable.  

Several other researchers also carried out research related to parameter identification 
such as E. Plaetschke, Mulder, and Breeman. This study discusses the flight test results 
of five input signals for the identification of aircraft parameters (Plaetschke et al., 1983). 
Aircraft parameters are calculated using two different parameter identification algorithms, 
the classical maximum likelihood method, and flight path reconstruction followed by 
linear regression analysis. The aircraft used was the De Havilland DHC-2 Beaver 
experimental aircraft. The five signals are divided into three groups, namely high-
frequency signals such as 3-2-1-1 and doublets, medium frequency signals, namely 
Mehra and DUT, and low-frequency signals, namely Schulz (Dr.P et al., 1979). The result 
of the comparison obtained is that, in general, the high-frequency signals seem to be 
somewhat superior to others. In particular, the control derivatives can be better estimated. 
Mehra signal is better in the symmetric case compared to the asymmetric case. Schulz's 
signal was inferior in almost every respect. The type of input signal has a considerable 
effect on the accuracy of parameter estimation (Plaetschke et al., 1983). Plaetschke's 
research was not focused on selecting the input form for the lateral dimension, but instead 
explained the comparison of the parameter estimation results obtained from data analysis 
for the five inputs with the method and the aircraft used. 

The other research is research from NASA for the case Twin Otter flight test. The input 
is in lateral dimension with a pulse shape on the Rudder and a doublet shape on the 
aileron (Klein & Morelli, 2006). Another standard input is the 3-2-1-1 form. This input is 
sometimes challenging to use because three pulses are long and tend to push the aircraft 
out of flight conditions like the frequency sweep. Therefore, input 2-1-1 is used instead to 
overcome this problem (Klein & Morelli, 2006). The doublet input signal is bang-bang type, 
switching between plus and minus. This type of input is still widely used for the excitation 
of the characteristic longitudinal and lateral motion planes. Doublet and 3-2-1-1 have 
relatively high estimation accuracy results in controlling for aileron and rudder deflection 
derivatives in the lateral case. In the longitudinal case, 3-2-1-1 yields higher estimation 
accuracy in controlling for elevator deflection derivatives than DUT signals(Dr.P et al., 
1979; Mulder et al., 1990).  

Other research by E.A Morelli and V. Klein are about the optimal input design for 
estimating airplane parameters, using Dynamic Programming Principles (Morelli, 1990). 
Dynamic programming principles are used for designs in the time domain. This study 
used the Cramer-Rao lower bounds method. Morelli and Klein's research describes the 
optimal input design but does not focus on selecting of input forms, especially on the 
lateral-directional dimension. 

Subsequent research by G. Licitra, A. Burger also discusses optimal input design for 
autonomous aircraft (Licitra et al., 2018). The optimal maneuver is obtained by solving 
the model problem with the time domain based on the optimum experimental design. OED 
(Optimal Experimental Design) and flight tests have been carried out for autonomous 
aircraft in the time domain. Compared to the widely used signal, the optimal solution is 
3-2-1-1, and the Cramer-Rao Lower Bound assesses the estimated performance. In 
Licitra's research, an optimal input design has been generated with the calculated data, 
and it has been compared with the 3-2-1-1 input form. Still, in this study, for safety 
reasons, the optimal aileron sequence is not fully implemented. 

Another study by Liliane Denis-Vidal et al. about estimating aircraft parameters with 
successive steps (Denis-Vidal et al., 2001). The optimal input is obtained by two different 
methods, namely dynamic programming principles and gradient algorithms. Analytical 
work for the same problem shows the square wave type input is better than the sinusoidal 
when the information is for parameter estimation (Chen, 1975). This study is for the 
longitudinal dimension only, and the authors explain that the least-squares criterion can 
be used to identify aircraft parameters. In Liliane's research, an optimal input design has 
been produced with the data from the estimation results, but the study is still only in the 
longitudinal dimension. 

2.2. Problem Definition 

This study will continue Jayanti's previous research, where previous research was only 
on the longitudinal dimension using the equation error method with the ordinary least 
square estimation technique. Therefore, this study aims to identify the most suitable input 
for IP in the lateral-directional dimension using the same process and observe the effect 
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of simulation time. The input forms given are pulse, doublet, and 3-2-1-1. The simulation 
time can be divided into 25, 50, 100, 150, and 200 seconds. The input form is chosen 
based on the input form that is generally used based on previous studies and reference. 
At the same time, the selected time is only a trial for a range of 25 to 200 seconds. The 
input can adjust to get a suitable identification of all parameters (Gupta & Hall, 1975). 

2.3. Method 

Parameter identification (PI) aims to obtain the values of all the parameters in the 
model. Thus, to get figures from aircraft motion parameters (such as stability and control 
derivatives, Phugoid motion frequency, and damping), the parametric technique is used. 
The method that will be used is equation error. Chose this method because it is the most 
practical. 
The state-space equation for motion dynamics: 

 
�̇� = 𝐴𝑥 + 𝐵𝑢 

(2-1) 

 
This motion is recorded in a set of discrete-time intervals t. So the equation can be 
rewritten in the following form: 

 
𝑧 = 𝐻𝜃 + 𝑣 

(2-2) 

 
Where is 𝜃 The vector of the searched parameter (which is not yet known) Then the 

parameter vector estimation is calculated using the OLS (Ordinary Least Square) error 
criteria, namely: 

 
𝜃 =  [𝐻′𝐻] + 𝐻′𝑧 

  (2-3) 

 

3. Result and Analysis 

Parameter identification in lateral/directional motion aims to obtain the following 
state-space values, with more than one input (multi-input), namely aileron and rudder 
deflection. The flight test data that will be used as material for testing the IP mechanism 
(parameter identification) is a virtual flight test for the C-5A aircraft at an altitude of 
20,000 feet and a speed of Mach number 0.6 (Force, 2011), which is carried out by 
simulating the known linear equations.  

Parameter identification in Multi Input Multi Output lateral motion aims to obtain the 
following state-space values: 

 
�̇�
�̇�
�̇�
�̇�

=

⎣
⎢
⎢
⎡

𝑦 𝑦 𝑦 𝑦

𝑙 𝑙 𝑙 𝑙

𝑛 𝑛 𝑛 𝑛

0 0 1 0 ⎦
⎥
⎥
⎤ 𝑣

𝑝
𝑟
𝜙

+

𝑦

𝑙
𝑛

0

𝑦

𝑙
𝑛

0

𝛿
𝛿

 (3-1) 

By plugging the values in the table into the above equation, we get: 
 

�̇�
�̇�
�̇�
�̇�

 =

−0.10601
−0.0070
0.0023

0

  

0
−0.9880
−0.0921

0

  

−189.586
0.2820

−0.2030
1

  

9.8073
0
0
0

𝑣
𝑝
𝑟
𝜙

 

+

−0.0178
0.4340
0.0343

0

  

3.3936
0.1870

−0.5220
0

𝛿
𝛿

 

(3-2) 

In eq. (3-1), it can be seen that the number of state variables is m = 4 (i.e., 𝑣, 𝑝, 𝑟, and 𝜙) 
and the number of inputs is 2, namely 𝛿  and 𝛿 . 
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If the motion of the plane stated in the state-space above is recorded in a set of discrete-
time 𝑡 = 𝑡(0), 𝑡(1), ⋯ , 𝑡(𝑛) intervals and if eq. (2-1) holds, then at each point in time the 
equation- the equation also holds: 
 

�̇�(0) = 𝑦 𝑣(0) +𝑦 𝑝(0) +𝑦 𝑟(0) +𝑦 𝜙(0) +𝑦 𝛿 (0) +𝑦 𝛿 (0) +𝜀(0)

�̇�(0) = 𝑙 𝑣(0) +𝑙 𝑝(0) +𝑙 𝑟(0) +𝑙 𝜙(0) +𝑙 𝛿 (0) +𝑙 𝛿 (0) +𝜀(0)

�̇�(0) = 𝑛 𝑣(0) +𝑛 𝑝(0) +𝑛 𝑟(0) +𝑛 𝜙(0) +𝑛 𝛿 (0) +𝑛 𝛿 (0) +𝜀(0)

�̇�(0) = 0 +0 +𝑟(0) +0 +0 +0               +𝜀(0)
                                                                                                                                           

�̇�(1) = 𝑦 𝑣(1) +𝑦 𝑝(1) +𝑦 𝑟(1) +𝑦 𝜙(1) +𝑦 𝛿 (1) +𝑦 𝛿 (1) +𝜀(1)

�̇�(1) = 𝑙 𝑣(1) +𝑙 𝑝(1) +𝑙 𝑟(1) +𝑙 𝜙(1) +𝑙 𝛿 (1) +𝑙 𝛿 (1) +𝜀(1)

�̇�(1) = 𝑛 𝑣(1) +𝑛 𝑝(1) +𝑛 𝑟(1) +𝑛 𝜙(1) +𝑛 𝛿 (1) +𝑛 𝛿 (1) +𝜀(1)

�̇�(1) = 0 +0 +𝑟(1) +0 +0 +0               +𝜀(1)
                                                                                                                                        

⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮
                                                                                                                                        

�̇�(𝑛) = 𝑦 𝑣(n) +𝑦 𝑝(n) +𝑦 𝑟(n) +𝑦 𝜙(n) +𝑦 𝛿 (n) +𝑦 𝛿 (n) +𝜀(𝑛)

�̇�(𝑛) = 𝑙 𝑣(n) +𝑙 𝑝(n) +𝑙 𝑟(n) +𝑙 𝜙(n) +𝑙 𝛿 (n) +𝑙 𝛿 (n)  +𝜀(𝑛)

�̇�(𝑛) = 𝑛 𝑣(n) +𝑛 𝑝(n) +𝑛 𝑟(n) +𝑛 𝜙(n) +𝑛 𝛿 (n) +𝑛 𝛿 (n) +𝜀(𝑛)

�̇�(𝑛) = 0 +0 +𝑟(𝑛) +0 +0 +0                +𝜀(𝑛)

(3-3) 

Where 𝑣(0), 𝑝(0), 𝑟(0), and 𝜙(0)are state variables measured at time 𝑡 = 𝑡(0), while 𝛿 (0) and 
𝛿 (0) are deflections elevator is measured at time 𝑡 = 𝑡(0), and 𝜀(0)  is the measurement 
error at time 𝑡 = 𝑡(0). Eq. (3-3) can be rewritten as follows: 
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 (3-4) 

 
In Eq. (3-4), 𝑠(𝑛) = {𝑣(𝑛) 𝑝(𝑛) 𝑟(𝑛) 𝜙(𝑛) 𝛿 (𝑛) 𝛿 (𝑛)} a row matrix of size 1 × 𝑙 with 
𝑙 = 𝑚 + 𝑢 = 4 + 2 = 6, while 0 × = {0 0 0 0 0 0}. This equation can be rewritten in 
the general form, namely: 
 

𝑧 = 𝐻𝜃 + 𝑣 
(3-5) 
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Where 𝑧 is a matrix or vector of recorded state parameter values, at discrete time intervals: 
H is a state matrix, as presented in equation (8), which has dimensions 𝑛 × (𝑚𝑙) =
𝑛 × (4 ∙ 6) = 𝑛 × 24, namely: 
 

𝐻 =

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
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𝑠(0) 0 × 0 × 0 ×

0 × 𝑠(0) 0 × 0 ×

0 × 0 × 𝑠(0) 0 ×

0 × 0 × 0 × 𝑠(0)
                                
𝑠(1) 0 × 0 × 0 ×

0 × 𝑠(1) 0 × 0 ×

0 × 0 × 𝑠(1) 0 ×

0 × 0 × 0 × 𝑠(1)
                                

⋮
                                
𝑠(𝑛) 0 × 0 × 0 ×

0 × 𝑠(𝑛) 0 × 0 ×

0 × 0 × 𝑠(𝑛) 0 ×

0 × 0 × 0 × 𝑠(𝑛)⎦
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
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⎥
⎤

 (3-6) 

 
While 𝜃 is the parameter vector to be searched for, namely: 
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⎪
⎪
⎪
⎪
⎫

 (3-7) 

The parameter vector sought is 𝜃  (which is not yet known), calculated using the OLS 
(Ordinary Least Square) error criterion, such as eq. (2-3). 
 
Aileron and rudder deflection is varied in three forms, namely pulse, doublet, and 3-2-1-
1. In addition to different input variations, the maximum time will also be distinguished, 
namely 25, 50, 100, 150, and 200 seconds. The pulse input form has a duration of 1 
second by 1 degree. The doublet input form has a duration of 1 second of 1 degree, and 
then 1 second of -1 degree, and so on is zero. The input form 3-2-1-1 has a duration of 3 
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seconds of 1 degree, then 2 seconds of -1 degree, then 1 second of 1 degree, and another 
1 second of 1 degree, so on is zero. 
In this study, 9 test scenarios will be carried out, namely as follows: Aileron will be given 
input first and then Rudder with a difference of 1 second. 
 

 

 
 
 
 
 

Table 3-1: Test Case 

 Input Form 
Aileron Rudder 

1 Pulse Pulse 
2 Doublet Doublet 
3 3-2-1-1 3-2-1-1 
4 Pulse Doublet 
5 Pulse 3-2-1-1 
6 Doublet Pulse 
7 Doublet 3-2-1-1 
8 3-2-1-1 Pulse 
9 3-2-1-1 Doublet 

 
The IP calculation as an example is in the form of a doublet input for ailerons and rudders 
with a maximum time of 25 seconds, and the results are as follows: 

𝐴 =  

⎣
⎢
⎢
⎡

𝑦 𝑦 𝑦 𝑦

𝑙 𝑙 𝑙 𝑙

𝑛 𝑛 𝑛 𝑛

0 0 1 0 ⎦
⎥
⎥
⎤

 =

−0.10601
−0.0070
0.0023

0

  

0
−0.9880
−0.0921

0

  

−189.586
0.2820

−0.2030
1

  

9.8073
0
0
0

 

𝐴 =  

⎣
⎢
⎢
⎡

𝑦 𝑦 𝑦 𝑦

𝑙 𝑙 𝑙 𝑙

𝑛 𝑛 𝑛 𝑛

0 0 1 0 ⎦
⎥
⎥
⎤

 =

−0.10489
−0.00687
0.002503
−1.5803

  

−0.3176
−0.95904
−0.0562

1

  

−190.098
0.2932

−0.1584
2.3616

  

9.818
−0.00226
−0.00147

2.5728

 

𝐵 =

𝑦

𝑙
𝑛

0

𝑦

𝑙
𝑛

0

=

−0.0178
0.4340
0.0343

0

  

3.3936
0.1870

−0.5220
0

 

Figure 3-2: Pulse Input 

Figure 3-3: 3211 Input 

Figure 3-1: Double Input 
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𝐵 =

𝑦

𝑙
𝑛

0

𝑦

𝑙
𝑛

0

=

0.0451
0.4264
0.0280
−1.294

  

2.845
0.1855

−0.5126
−1.355

 

 
Furthermore, with matrix A and, B the results of the identification of these parameters, 
namely 𝐴  and  𝐵 Simulations can be carried out on the same aileron and rudder input 
responses, and the results are as follows: 
 

 

Figure 3-4: The lateral input response to v in the original and estimated data 

 

 

Figure 3-5: The lateral input response for p in the original and estimated data 
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Figure 3-6: The lateral input response to r in the original and estimated data 

 

Figure 3-7: The lateral input response to 𝜙 in the original and estimated data 

Furthermore, the RMSE (Root mean square error) value will be observed in the results of 
the identification of matrix A parameters for all cases, with the following formula: 

r 
(r

ad
/s

)
a
 (

ra
d)

r (
ra

d)
 (

ra
d)

a
 (

ra
d)

r (
ra

d)

𝑅𝑀𝑆𝐸 =  
1

𝑚 × 𝑛
[𝑓(𝑖, 𝑗) − 𝑔(𝑖, 𝑗)]  (3-8) 
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Figure 3-8: Comparison of RMSE Value in each Test Case in Graphic 

Table 3-2: Comparison of RMSE Value in each Test Case in Table 

case 25 s 50 s 100 s 150 s 200 s 
1 0.372974 0.373063941 0.37310116 0.373109 0.373111 
2 0.379721 0.379642297 0.37963934 0.379639 0.379639 
3 0.371384 0.371385044 0.37142583 0.371436 0.371439 
4 0.384697 0.385002849 0.38512834 0.385155 0.385162 
5 0.412423 0.412423312 0.41283379 0.412867 0.412876 
6 0.369818 0.369818309 0.36983126 0.369831 0.412876 
7 0.412876 0.399640347 0.39964035 0.399779 0.399787 
8 0.366029 0.365790968 0.36577454 0.365772 0.365771 
9 0.372095 0.371707334 0.37169973 0.371699 0.371699 

 
(Figure 3-8) and (Table 3-2) shows that case 8 has the lowest RMSE value or error among 
other cases. Case 8 is a 3-2-1-1 aileron input and a pulse rudder input. At the same time, 
the highest error value is case 5, with aileron pulse input and rudder input in the form of 
3-2-1-1. The result is slightly different from V. Klein and E. A Morelli, who in their book, 
explains that the input form in lateral dimension is implemented in the pulse form on the 
Rudder and the doublet form on the aileron (Klein & Morelli, 2006). However, according 
to the state of input that is acceptable and can be utilized by the flight test communication 
(Mulder et al., 1990) and results of research (Plaetschke et al., 1983), the signal 3-2-1-1 
is one of them is superior to the other. In this lateral dimension simulation, the simulation 
time in each case does not always make the error value decrease. In cases, namely cases, 
1,3,4,5, and 6, the error value increases in proportion to the longer simulation time. While 
in cases 2, 7, 8, and 9, the RMSE value decreases as the simulation time gets longer. 

Table 3-3: Comparison with other research 

 Research   
This Research V Klein and Morelli Mulder Plaetschke 

Recommended Input 3-2-1-1 Aileron input Doublet Aileron Input 3-2-1-1 3-2-1-1 
 Pulse Rudder input Pulse Rudder Input   
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4. Conclusions 

The results of parameters identification in the lateral-directional dimension using C-5 A 
aircraft data indicate that aileron input in the form of 3-2-1-1 and the rudder input in the 
form of the pulse has the lowest error value among all cases. The method used is equation 
error with ordinary least square. Therefore, the combination of control input with 3-2-1-1 
aileron input and pulse rudder input is most suitable for the lateral-directional dimension 
among all cases.  The longer simulation time does not always indicate a decreasing error 
value (RMSE) in each input form. In some cases, the RMSE value increases with increasing 
simulation time. The results are same with Mulder and Plaetschke research that 3-2-1-1 
is one of them is superior to the other and slightly different with input used in V-Klein 
and Morelli’s books that use doublet in aileron and pulse in rudder input. The selection 
of information can excite the motion mode properly to know the dynamic characteristics 
of the aircraft more accurately. The dynamic characteristics of the aircraft will be related 
to stability analysis and aircraft control making. So this research is essential.   
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