
Jurnal Teknologi Dirgantara Vol. 20 No. 2 December 2022 : pp 84 – 92 (Ramayanti) 

84 

 Flatwise Testing Modeling Study On Aluminium 
Honeycomb Panel 

Sri Ramayanti1 

1Research Center for Satellite Technology, BRIN, Indonesia 

 
e-mail: sri.ramayanti@brin.go.id 

 
Received: 20-11-2022. Accepted: 11-01-2023. Published: 31-01-2023 

DOI: 10.30536/j.jtd.2022.v20.a3935 

Abstract 
Honeycomb sandwich structures are widely used in space applications due to their 

exceptional performance. Extensive research has been conducted on the response of 
honeycomb structures to various external loads. The out-of-plane strength, including 
compression and tensile properties, is a critical aspect of honeycomb structures. Despite 
some experimental and numerical studies, research specifically addressing the tensile 
direction, such as flatwise tensile testing in honeycombs, remains limited. This testing 
focuses on the bond strength between the face sheets and the honeycomb core, as well as 
the tensile strength of the core itself. Utilizing finite element analysis (FEA) has proven 
effective for characterizing honeycomb structures under various load conditions. However, 
the complex geometry of the core requires an enormous number of elements, increasing 
computation times. Thus, simplifying the model by replacing the hexagonal geometry with 
a homogenized solid layer with effective material properties is necessary. This study 
focuses on flatwise tensile testing of aluminum honeycomb using different modeling 
approaches: discrete, continuum, and equivalent plate models. The discrete model serves 
as the reference due to its detailed structural representation. The continuum-Gibson 
model, while reasonably accurate in stress estimation, tends to overestimate 
displacement. Both equivalent models, Hoff and Reissner, significantly overestimate 
displacement, with Hoff underestimating stress and Reissner overestimating it. In 
contrast, equivalent models offer insights, but their accuracy varies, necessitating further 
calibration for precise predictions. Future research should validate these simulation 
results with real tests. 

Keywords: Honeycomb structures, flatwise tensile testing, Finite Element Analysis (FEA).   

Nomenclature (Optional) 
𝐸𝐸𝑖𝑖 = Effective Young Modulus parallel to 𝑋𝑋𝑖𝑖 direction, 𝑖𝑖=1, 2,3 

𝐸𝐸𝑐𝑐 = Young Modulus of cell wall, Pa 

d = Cell size, m 

L = Length of the inclined cell wall, m 

h = Length of the vertical cell wall, m 

t = Thickness of the wall, m 

𝜃𝜃 = Angle, degree 

𝜌𝜌∗ = Effective density of the honeycomb 

𝜌𝜌𝑐𝑐 = Mass density of the solid cell wall material 

𝜌𝜌𝑓𝑓 = Mass density of the face material 

𝑣𝑣𝑖𝑖𝑖𝑖 = Effective Poisson’s ratio of the honeycomb core I the material system of 
coordinates 

𝑣𝑣𝑐𝑐 = Poisson’s ratio of the solid cell wall 

mailto:sri.ramayanti@brin.go.id


Jurnal Teknologi Dirgantara Vol. 20 No. 2 December 2022 : pp 84 – 92 (Ramayanti) 

85 

𝐺𝐺𝑖𝑖𝑖𝑖 = Effective Shear Modulus of the honeycomb core I the material system of 
coordinates 

𝐺𝐺𝑐𝑐 = Shear modulus of the solid cell wall material 

𝑣𝑣𝑒𝑒𝑒𝑒 = Equivalent Poisson’s ration 

𝑣𝑣𝑓𝑓 = Poisson’s ratio of the face 

𝑡𝑡𝑒𝑒𝑒𝑒 = Equivalent thickness 

ℎ𝑐𝑐 = Core thickness  

ℎ𝑓𝑓 = Face thickness 

𝐸𝐸𝑒𝑒𝑒𝑒 = Equivalent young modulus 

𝐺𝐺𝑥𝑥𝑒𝑒𝑒𝑒 = Equivalent shear modulus in x direction 

𝐺𝐺𝑐𝑐𝑥𝑥𝑐𝑐 = Out-of-plane shear modulus in xz plane 

𝐺𝐺𝑦𝑦𝑒𝑒𝑒𝑒 = Equivalent shear modulus in y direction 

𝐺𝐺𝑐𝑐𝑦𝑦𝑐𝑐 = Out-of-plane shear modulus in yz plane 

𝜌𝜌𝑒𝑒𝑒𝑒 = Equivalent mass density 

1. Introduction 
Honeycomb sandwich structures are commonly used in space applications due to their 

high stiffness-to-weight and high strength-to-weight ratio[1]. They can be used as the 
main structure, structural support, and also in solar arrays [2][3][4]. Usually sandwich 
structure consist of two facing layers of thin sheets separated by a core material [5]. The 
thin sheets consist of high stiffness material commonly made of aluminum or composite 
material to support in-plane loads and the core uses light material such as aluminum 
honeycomb to sustain the strong faces [6].  

Significant attention has been dedicated to studying how honeycomb structures 
respond to various external loads. This includes in-plane axial and shear loads, biaxial 
loading, out-of-plane transverse shear, bending, and more complex load combinations [7]. 
The out-of-plane strength such as compression and tensile is a critical aspect of 
honeycomb structures. Although a few experimental and numerical studies have been 
conducted, research specifically addressing the tensile direction such as flatwise tensile 
testing in honeycombs remains limited. Flatwise tensile testing of honeycomb structures 
is important for understanding and evaluating the performance of sandwich panels under 
tensile loads applied perpendicular to their faces. This testing focuses on the bond 
strength between the face sheets and the honeycomb core, as well as the tensile strength 
of the core itself [8]. Djarot et al. studied experimental flatwise tensile on carbon fiber-
reinforced plastic and focused on the preparation of core using methyl-ethyl-ketone[9]. 
Roy et al. compared the experimental and analytical of the Nomex honeycomb using 
discrete modeling in finite element analysis (FEA) [10]. Utilizing FEA has proven effective 
for characterizing honeycomb structures under various load conditions. However, due to 
the complex geometry of the core, it will need an enormous number of elements that make 
calculation times increase. Hence, it is required to simplify the model by replacing the 
hexagonal geometry with to homogenized solid layer with effective material properties 
[11][12], [13]. Therefore, this present study will focus on flatwise tensile testing on 
aluminum honeycomb by using different modeling techniques approach, discrete, 
continuum modeling, and equivalent plate models as can be seen in Figure 2-1.  

 

2. Methodology 
A finite element model of a honeycomb panel with the flat-wise tension test was 

developed to compare various modeling approaches such as discrete, continuum, and 
equivalent plates, utilizing SIMCenter software for the analysis. The honeycomb panel 
employed in this modeling comprised an aluminum 7075 series for the face sheets and an 
aluminum 5056 type for the core. The material properties for both the face sheets and the 
core are detailed in Table 2-1  
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Table 2-1: Geometry And Materials Parameters Of Honeycomb Panel 

Position Geometric parameters 
(m) 

Materials parameters 

Core layer (Al 5056) ℎ𝑐𝑐 = 1 × 10−2𝑚𝑚 𝐸𝐸 = 71.0 𝐺𝐺𝐺𝐺𝐺𝐺 
 𝑡𝑡 = 6.67 × 10−5𝑚𝑚 𝐺𝐺 = 25.9 𝐺𝐺𝐺𝐺𝐺𝐺 
 D = 0.032𝑚𝑚 𝜇𝜇 = 0.33 
  𝜌𝜌 = 2640 𝑘𝑘𝑘𝑘/𝑚𝑚3  

 
Aluminum face (Al 7075) ℎ𝑓𝑓 = 1 × 10−3𝑚𝑚 𝐸𝐸 = 71.7 𝐺𝐺𝐺𝐺𝐺𝐺 

  𝐺𝐺 = 26.9 𝐺𝐺𝐺𝐺𝐺𝐺  
  𝜇𝜇 = 0.33 
  𝜌𝜌 = 2810 𝑘𝑘𝑘𝑘/𝑚𝑚3 

 

 

 

 
(a) (b) (c) 

 
Figure 2-1: Honeycomb panel models for FEA (a) discrete model, (b) continuum 

model, (c) equivalent plate 
 

2.1. Discrete modeling 
In this modeling, the honeycomb panel uses the intricate cellular details of the core, 

enabling a more detailed analysis. However, because of the complexity and large number 
of cells in a full-scale honeycomb shell structure, this approach is less favored due to the 
extensive computational time required. Nevertheless, this modeling approach will serve as 
a reference for comparison with continuum and equivalent plate modeling. The details of 
the honeycomb structure can be seen in Figure 2-2.  

 
2.2. Continuum modeling 

In this modeling, the core of the honeycomb structure will be represented using 
orthotropic material properties. The Gibson model, the most widely adopted analytical 
framework for determining effective material properties, assumes that the deformation of 
the honeycomb walls is primarily due to the bending of the inclined walls. This model 
provides a set of analytical formulas applicable to both classical and commercial 
honeycombs. Classical honeycombs have walls of uniform thickness, whereas commercial 
honeycombs feature double walls attached by gluing along the ribbon direction. In this 
study, we use commercial honeycombs whose properties can be seen in Table 2-1.  

The effective modulus is given as follows[14]: 

𝐸𝐸1 =
𝐸𝐸𝑐𝑐 �

𝑡𝑡
𝐿𝐿�

3
𝑐𝑐𝑐𝑐𝑐𝑐(𝜃𝜃)

�ℎ𝐿𝐿 + 𝑐𝑐𝑖𝑖𝑠𝑠(𝜃𝜃)� 𝑐𝑐𝑖𝑖𝑠𝑠2(𝜃𝜃)
 (2-1) 
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𝐸𝐸2 =
𝐸𝐸𝑐𝑐 �

𝑡𝑡
𝐿𝐿�

3
�ℎ𝐿𝐿 + 𝑐𝑐𝑖𝑖𝑠𝑠(𝜃𝜃)�

𝑐𝑐𝑐𝑐𝑐𝑐3(𝜃𝜃)  
(2-2) 

𝑣𝑣12 =
𝑐𝑐𝑐𝑐𝑐𝑐2(𝜃𝜃)

�ℎ𝐿𝐿 + 𝑐𝑐𝑖𝑖𝑠𝑠(𝜃𝜃)� 𝑐𝑐𝑖𝑖𝑠𝑠(𝜃𝜃)
 

(2-3) 

𝐺𝐺12 = 𝐸𝐸𝑐𝑐 �
𝑡𝑡
𝐿𝐿
�
3 1 + 𝑐𝑐𝑖𝑖𝑠𝑠(𝜃𝜃)

3𝑐𝑐𝑐𝑐𝑐𝑐(𝜃𝜃)  (2-4) 

𝐸𝐸3 =
𝜌𝜌
𝜌𝜌𝑐𝑐
𝐸𝐸𝑐𝑐 (2-5) 

𝑣𝑣13 =
𝐸𝐸1
𝐸𝐸3
𝑣𝑣𝑐𝑐 

 

(2-6) 

𝑣𝑣23 =
𝐸𝐸2
𝐸𝐸3
𝑣𝑣𝑐𝑐 (2-7) 

𝐺𝐺13 = 𝐺𝐺23 = 𝐺𝐺𝑐𝑐 �
𝑡𝑡
𝐿𝐿
�

𝑐𝑐𝑐𝑐𝑐𝑐(𝜃𝜃)

�ℎ𝐿𝐿 + 𝑐𝑐𝑖𝑖𝑠𝑠(𝜃𝜃)�
 

(2-8) 

𝜌𝜌∗ = 𝜌𝜌𝑐𝑐

𝑡𝑡
𝐿𝐿 �
ℎ
𝐿𝐿 + 1�

𝑐𝑐𝑐𝑐𝑐𝑐𝜃𝜃 �ℎ𝐿𝐿 + 𝑐𝑐𝑖𝑖𝑠𝑠𝜃𝜃�
 (2-9) 

 
 

 
 
 
 

Figure 2-2: Details of 2D hexagonal honeycomb cell 

 
 
 

2.3. Equivalent Model 
In this modeling, the honeycomb panel including the core and face will be converted 

into an equivalent isotropic plate by equalizing the bending stiffness between the 
honeycomb sandwich plate and the equivalent plate [15]. 

2.3.1. Reissner Theory 

L 

D 
h 

𝜃𝜃 

t, single wall 

double wall 

y, 2 

x, 1 

Longitudinal direction 

Transverse direction 
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According to Reissner's theory, the surface panel is considered very thin with a 
uniformly distributed stress along its thickness, resulting in a state of membrane stress. 
Given the soft nature of the sandwich core, the stress distribution parallel to the XY plane 
is disregarded. This assumption indicates that the tensile stresses in the x and y directions 
are equal, while the shear stress in the xy direction is zero within the sandwich. 
Furthermore, the stress component in the honeycomb structure is assumed to be 
minimal, leading to the assumption that both tensile stress and strain in the z direction 
are zero. 

The equivalent parameter of Reissner's theory can be seen as follows: 
𝑣𝑣𝑒𝑒𝑒𝑒 = 𝑣𝑣𝑓𝑓 (2-10) 

𝑡𝑡𝑒𝑒𝑒𝑒 = √3�ℎ𝑐𝑐 + ℎ𝑓𝑓� (2-11) 

𝐸𝐸𝑒𝑒𝑒𝑒 =
2𝐸𝐸𝑓𝑓ℎ𝑓𝑓

√3�ℎ𝑐𝑐 + ℎ𝑓𝑓�
 (2-12) 

𝐺𝐺𝑥𝑥𝑒𝑒𝑒𝑒 = 3
√3
𝐺𝐺𝑐𝑐𝑥𝑥𝑐𝑐or 𝐺𝐺𝑦𝑦𝑒𝑒𝑒𝑒 = 3

√3
𝐺𝐺𝑐𝑐𝑦𝑦𝑐𝑐 (2-13) 

𝜌𝜌𝑒𝑒𝑒𝑒 =
2𝜌𝜌𝑓𝑓ℎ𝑓𝑓 + 𝜌𝜌𝑐𝑐(𝐻𝐻 − 2ℎ𝑓𝑓)

𝑡𝑡𝑒𝑒𝑒𝑒
 (2-14) 

2.3.2. Hoff Theory 
This theory extends classical plate theory to account for nonlinear behavior and large 

deformations, which are significant in many practical applications of sandwich panels. 
Compared with the Reisner theory, Hoff theory is more complex considering the bending 
stiffness of the panel. Therefore, there will be some modification in the equivalent 
parameter, as can be seen as follows:  

𝑣𝑣𝑒𝑒𝑒𝑒 = 𝑣𝑣𝑓𝑓 (2-15) 

𝑡𝑡𝑒𝑒𝑒𝑒 = �ℎ𝑓𝑓2 + 3�ℎ𝑐𝑐 + ℎ𝑓𝑓�
2
 (2-16) 

𝐸𝐸𝑒𝑒𝑒𝑒 =
2𝐸𝐸𝑓𝑓ℎ𝑓𝑓

�ℎ𝑓𝑓2 + 3�ℎ𝑐𝑐 + ℎ𝑓𝑓�
2
 (2-17) 

𝐺𝐺𝑥𝑥𝑒𝑒𝑒𝑒 ==
�ℎ𝑐𝑐 + ℎ𝑓𝑓�

2

ℎ𝑐𝑐�ℎ𝑓𝑓2 + 3�ℎ𝑐𝑐 + ℎ𝑓𝑓�
2
𝐺𝐺𝑐𝑐𝑥𝑥𝑐𝑐 (2-18) 

𝐺𝐺𝑦𝑦𝑒𝑒𝑒𝑒 ==
�ℎ𝑐𝑐 + ℎ𝑓𝑓�

2

ℎ𝑐𝑐�ℎ𝑓𝑓2 + 3�ℎ𝑐𝑐 + ℎ𝑓𝑓�
2
𝐺𝐺𝑐𝑐𝑦𝑦𝑐𝑐 (2-19) 

𝜌𝜌𝑒𝑒𝑒𝑒 =
2𝜌𝜌𝑓𝑓ℎ𝑓𝑓 + 𝜌𝜌𝑐𝑐ℎ𝑓𝑓

�ℎ𝑓𝑓2 + 3�ℎ𝑐𝑐 + ℎ𝑓𝑓�
2
 (2-20) 

 
 
A 50x50 mm panel will be consistently utilized across all modeling approaches based 

on ASTM C297. In discrete modeling, only the core and face sheets will be included. The 
continuum method will feature a single core replaced by an orthotropic layer, while the 
equivalent model will employ a single plane with an equivalent thickness determined by 
Equations (2-11) and (2-16). 

The top and bottom faces of the sandwich panel were connected to steel block models 
of the same dimensions as the panel. The adhesive between the face-core block was 
neglected in this simulation, and the connection was modeled as perfectly bonded, 
ensuring no sliding between components. The outermost parts of the blocks were 
restrained in the X, Y, and Z directions to prevent any translation and rotation, facilitating 
easy measurement of the reaction forces. A load of 100 kN was applied in both the -Z and 
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+Z directions on the blocks, replicating the load that will be used in future testing with a 
Universal Testing Machine (UTM). 

The analytical results from Equations (2-1) to (2-20) were employed in this simulation, 
as detailed in Table 2-2. 
 

Table 2.2: Result Parameters Of The Continuum And Equivalent Theories 

Elastic parameters Continuum 
modeling 

Reissner Theory Hoff Theory 

Thickness - 0.019 m 0.019m 
Elastic modulus 𝐸𝐸1 = 7.79 × 106𝐺𝐺𝐺𝐺 

𝐸𝐸2 = 7.79 × 106𝐺𝐺𝐺𝐺 
𝐸𝐸3 = 1.46 × 1012𝐺𝐺𝐺𝐺 

 

𝐸𝐸𝑒𝑒𝑒𝑒 = 7.53 × 109𝐺𝐺𝐺𝐺 
 

𝐸𝐸𝑒𝑒𝑒𝑒 = 7.52 × 109𝐺𝐺𝐺𝐺 
 

Shear Modulus 𝐺𝐺12 = 1.95 × 106𝐺𝐺𝐺𝐺 
𝐺𝐺13 = 5.61 × 108𝐺𝐺𝐺𝐺 
𝐺𝐺23 = 5.61 × 108𝐺𝐺𝐺𝐺 

 

𝐺𝐺𝑥𝑥𝑒𝑒𝑒𝑒 = 4.66 × 1010𝐺𝐺𝐺𝐺 
𝐺𝐺𝑦𝑦𝑒𝑒𝑒𝑒 = 4.66 × 1010𝐺𝐺𝐺𝐺 

𝐺𝐺𝑥𝑥𝑒𝑒𝑒𝑒 = 2.95 × 1010𝐺𝐺𝐺𝐺 
𝐺𝐺𝑦𝑦𝑒𝑒𝑒𝑒 = 4.66 × 1010𝐺𝐺𝐺𝐺 

Poisson’s ratio 𝑣𝑣12 = 0.6 
𝑣𝑣13 = 1.77 × 10−6 
𝑣𝑣23 = 1.77 × 10−6 

 

- - 

Density 𝜌𝜌 = 99.6 𝑘𝑘𝑘𝑘/𝑚𝑚3 𝜌𝜌𝑒𝑒𝑒𝑒 = 72.59 𝑘𝑘𝑘𝑘/𝑚𝑚3  𝜌𝜌𝑒𝑒𝑒𝑒 = 72.49 𝑘𝑘𝑘𝑘/𝑚𝑚3  
 

3. Result and Analysis 
Figure 3-1 presents the results of the FEA flatwise tension test using discrete 
modeling. It is evident that the greatest stress occurs at the ends and outer sides of 
the honeycomb, affecting both the core and the aluminum face. The largest 
displacement, however, is observed only at the top and bottom of the honeycomb core, 
with no significant displacement in the aluminum face. This indicates that, under a 
tensile force with a free out-of-plane boundary, damage is confined to the core. This 
outcome aligns with expectations, as acceptable damage in real testing scenarios is 
typically limited to the core [8]. 

Figure 3-2 displays the results of the FEA flatwise tension test using continuum 
modeling. The stress distribution closely resembles that of the discrete modeling 
results, with stress occurring on the outer sides of the honeycomb panel. The 
displacement simulation results are also similar. 

Figures 3-4 and 3-5 show the FEA results for the honeycomb equivalent plate 
according to Hoff's theory and Reissner's theory, respectively. Both models exhibit 
similar stress and displacement patterns. However, the location of the maximum 
stress points differs significantly from the FEA results obtained from the discrete and 
continuum honeycomb models. 

 
(a) 

 
(b) 

Figure 3-1: FEA of the flatwise tension test of discrete modeling (a) Stress, (b) 
Displacement 
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(a) 

 
(b) 

Figure 3-2: FEA of the flatwise tension test of Continuum modeling (a) Stress, (b) 
Displacement 

 
(a)  

(b) 
Figure 3-4: FEA of the flatwise tension test of Equivalent plate-Hoff Theories 

modeling (a) Stress, (b) Displacement 

 
(a)  

(b) 
Figure 3-5: FEA of the flatwise tension test of Equivalent plate-Reissner Theories 

modeling (a) Stress, (b) Displacement 

 
 

Table 3-1 shows the result of the FEA flatwise tension test of all three models. 
The discrete model serves as the reference for comparison which shows a 
displacement of 0.00087 mm and a stress of 50.33 MPa. 

The continuum-Gibson model results in a displacement of 0.001448 mm, which 
is approximately higher than the discrete model. The stress value of 49.61 MPa is 
slightly lower than the discrete model, with a difference of about 1.4%. This value 
provides a reasonable approximation. The equivalent-Hoff model shows a significantly 
larger displacement of 0.023 mm, which is substantially higher than the discrete 
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model. This indicates that the equivalent-Hoff model may not accurately capture the 
stiffness of the honeycomb structure. The stress value of 45.64 MPa is lower than the 
discrete model by about 9.3%, suggesting an underestimation of the material's 
strength. The equivalent-Reissner model yields a displacement of 0.0225 mm, which 
is also considerably higher than the discrete model. The stress value of 61.2 MPa, 
however, is significantly higher than the discrete model by 21.6%. This suggests that 
the Reissner model may overestimate the stress in the material under similar loading 
conditions. 

Table 3-1: Simulation Result Of All Three Model Approaches 

Type Discrete Continuum-
Gibson Model 

Equivalent-Hoff 
Model 

Equivalent-
Reissner Model 

Displacement (mm)  0.00087 0.001448 0.023 0.0225 
Stress (MPa) 50.33 49.61 45.64 61.2 

 

4. Conclusions 
In the present study, various modeling for FEA analysis in honeycomb structure's 

response to flatwise tensile testing such as discrete, continuum, and equivalent plate 
modeling are reviewed. The discrete model is used as the reference due to the use of 
the details of the structure. The continuum-Gibson model, while reasonably accurate 
in stress estimation, tends to overestimate displacement. Both equivalent models, 
Hoff and Reissner, significantly overestimate displacement, with Hoff underestimating 
stress and Reissner overestimating it. Therefore, while equivalent models can provide 
insights, their accuracy varies, and they may not be suitable for precise predictions 
without further calibration. Future research should validate these simulation results 
with real tests. 
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